ABC | Volume 114, Nº4, Abril 2020

Artigo de Revisão Marques et al. Inteligência Artificial em Cardiologia Arq Bras Cardiol. 2020; 114(4):718-725 Costuma-se dizer que os tipos de aprendizado podem ser: a) Supervisionados: quando o algoritmo recebe informações sobre cada lição, bem como os rótulos associados a ela, tendo um papel importante em relação à previsão. Por exemplo, se é desejado prever se um paciente é mais suscetível à tosse com o uso de inibidores da enzima de conversão da angiotensina, a análise deve ser realizada baseada em um banco de dados saudáveis contendo um grupo de pacientes que demonstrou essa reação e em outro grupo no qual esse fato não foi observado. b) Não-supervisionado: quando os rótulos das lições não são fornecidos a priori , cabe ao algoritmo encontrar estruturas ocultas no banco de dados. Um exemplo hipotético é a clusterização de um banco de dados de pacientes com cardiomiopatia hipertrófica de acordo com os achados de exame de imagem. c) Reforço: inspirado na biologia comportamental, é um tipo de aprendizado baseado em recompensa. 18,19 Outro conceito importante é o da computação cognitiva. Ele pode ser entendido como um conjunto de sistemas de autoaprendizagem destinados a imitar o processo de pensamento humano com base no uso de ferramentas de ML, reconhecimento de padrões e processamento natural de linguagem. 9 O IBM Watson é um exemplo da computação cognitiva na área médica. 20,21 Algumas ferramentas e aplicativos de inteligência artificial Atualmente, existem vários modelos de ML, cada um deles com diversas particularidades, usos e limitações variados. As aplicações de alguns desses modelos em Cardiologia são explicadas nos parágrafos seguintes, enquanto uma breve descrição de cada um deles e seu tipo é mostrada na Tabela 1. a) Support Vector Machine (SVM): utilizada por Samad et al., 22 para prever com sucesso a deterioração da função ventricular em pacientes submetidos a reparo da tetralogia de Fallot a partir de um banco de dados de 153 pacientes com dados clínicos, eletrocardiográficos e de ressonância magnética cardíaca. Em relação à previsão de qualquer deterioração (menor ou maior) vs. nenhuma deterioração, a média da área sob a curva (AUC) foi de 0,82±0,06. 22 Berikol et al. 23 utilizaram dados clínicos, laboratoriais (níveis de troponina I e CK-MB), do ECG e ecocardiográficos de 228 pacientes que apresentaram dor no peito no pronto‑socorro para classificação quanto à presença ou ausência de Síndrome Coronariana Aguda. Precisão, sensibilidade e especificidade foram, respectivamente, 99,19, 98,22 e 100%. 23 Betancur et al., 24 também utilizaram o SVM para definir com maior precisão o posicionamento do plano da válvula (PV) mitral durante a segmentação ventricular esquerda nos exames de Tomografia Computadorizada por Emissão de Fóton Único (SPECT). Imagens de 392 pacientes foram analisadas e os bons resultados obtidos foram compatíveis com a opinião de especialistas da área – AUC: 0,82 [0,74-0,9] para detecção regional de áreas de estenose obstrutiva e áreas de déficit de perfusão total isquêmica. 24 b) Naive Bayes (NB): Paredes et al., 25 utilizaram uma fusão de NB e algoritmo genético para prever o risco de ocorrência de eventos cardiovasculares (por exemplo, hospitalização oumorte), combase emdados de 559pacientes comSíndromeCoronariana Aguda - Infarto do Miocárdio sem Supradesnivelamento do Segmento ST (SCA-IAMSST). Sensibilidade e especificidade foram, respectivamente, 79,8, e 83,8. 25 c) K-nearest neighbors (KNN): Al-Mallah et al., 26 compararam a previsão de mortalidade por todas as causas em 10 anos entre o modelo de regressão logística clássico e o KNN, considerando um banco de dados de 34.212 pacientes com informações clínicas e informações obtidas após o teste de esforço em esteira utilizando o protocolo padrão de Bruce. 26 Os resultados obtidos por essa ferramenta de ML mostraram sensibilidade de 87,4% e especificidade de 97,2%, melhores do que o desempenho preditivo do tradicional escore de risco Atherosclerosis Cardiovascular Disease Risk Score (ASCVD). d) Genetic algorithms (GA): Smisek et al., 27 desenvolveram um dispositivo wearable (“vestível”) para detectar arritmias a partir do registro de informações de um eletrocardiograma de derivação única. Os dados foram analisados a partir de uma combinação do (SVM), árvore de decisão e regras baseadas em limiares. Algoritmos genéticos foram usados para selecionar as características mais adequadas a serem utilizadas no trabalho. Em relação à detecção de fibrilação atrial, obteve-se um escore F1 (média harmônica de valor preditivo positivo e sensibilidade) de 0,81. 27 Stuckey et al., 28 utilizaram a Análise de Tomografia Espacial de Fase Cardíaca – ummétodo pioneiro que dispensa o uso de radiação e contraste, bem como a realização de testes de esforço ou farmacológico – combinado com modelos de ML (por exemplo, algoritmos genéticos) para analisar os sinais da fase torácica. Neste estudo, os autores utilizaram essa ferramenta para avaliar pacientes com doença coronariana e dor torácica que foramencaminhados pelomédico para realizar uma angiografia. Foram estudados 606 pacientes e os resultados mostraram sensibilidade de 92%, especificidade de 62% e valor preditivo de 96% para doença coronariana. 28 e) Random Forests (RF): Samad et al., 29 analisaram um banco de dados composto por variáveis clínicas e eletrocardiográficas para avaliar a sobrevida em 10 diferentes períodos de tempo (variando de 6 a 60 meses), considerando um total de 171.510 pacientes. A RF foi utilizada, com excelentes resultados, melhor do que aqueles obtidos por meio de escores tradicionais, como o escore de risco de Framingham e o escore das diretrizes da ACC/AHA. A área sob a curva (AUC) foi superior a 0,82. 29 Ambale-Venkatesh, et al., 30 utilizaram informações de testes não invasivos, questionários, biomarcadores e exames de imagem de 6.814 pacientes para construir 739 variáveis (características), a fim de aplicar uma variante do RF – chamada survivor random forests 31 – para prever eventos cardiovasculares. (morte por todas as causas, acidente vascular cerebral, todas as doenças cardiovasculares, doença coronariana, fibrilação atrial e insuficiência cardíaca), que apresentou um desempenho melhor do que os escores de risco estabelecidos, como por exemplo, MESA-CHD, AHA/ASCVD e o escore de Framingham, com maior acurácia na previsão (diminuição de 10%-25% do escore de Brier) 30,31 . f) K-means : Cikes et al., 32 utilizaram um banco de dados composto por variáveis clínicas e parâmetros ecocardiográficos para os quais foram aplicados dois modelos de ML, K-means e Multiple Kernel Learning , a fim de categorizar os pacientes em grupos mutuamente exclusivos para avaliar a resposta 720

RkJQdWJsaXNoZXIy MjM4Mjg=