ABC | Volume 113, Nº6, Dezembro 2019

Artigo de Revisão Ferrari et al. Captação da glicose mediada pelo exercício físico Arq Bras Cardiol. 2019; 113(6):1139-1148 9. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol (1985).2005;98(4):1154-62. 10. Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ. 2014;38(4):308-14. 11. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993-1017. 12. Röhling M, Herder C, Stemper T, Müssig K. Influence of Acute and Chronic Exercise on Glucose Uptake. J Diabetes Res. 2016;2016:2868652. 13. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457-65. 14. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25(1):4-7. 15. WilcoxG.InsulinandInsulinResistance.ClinBiochemRev.2005;26(2):19-39. 16. Czech MP. The nature and regulation of the insulin receptor: structure and function. Annu Rev Physiol. 1985 Mar;47:357-81. 17. Ramalingam L, Oh E, Thurmond DC. Novel roles for insulin receptor (IR) in adipocytes and skeletal muscle cells via new and unexpected substrates. Cell Mol Life Sci. 2013;70(16):2815-34. 18. Waksman G, Kumaran S, Lubman O. SH2 domains: role, structure and implications for molecular medicine. Expert RevMol Med. 2004;6(3):1-18. 19. Maier U, Babich A, Nurnberg B. Roles of non-catalytic subunits in gbetagamma-induced activation of class I phosphoinositide 3-kinase isoforms beta and gamma. J Biol Chem. 1999;274(41):29311-7. 20. Gagliardi PA, di Blasio L, Orso F, Seano G, Sessa R, Taverna D, et al. 3-Phosphoinositide-Dependent Kinase 1 Controls Breast Tumor Growth in a Kinase-Dependent but Akt-Independent Manner. Neoplasia. 2012;14(8):719-31. 21. Xiao H, Liu M. Atypical protein kinase C in cell motility. Cell Mol Life Sci. 2013;70(17):3057-66. 22. Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab. 2002;283(1):E1-11. 23. Yu H, Fujii NL, Toyoda T, An D, Farese RV, Leitges M, et al. Contraction stimulates muscle glucose uptake independent of atypical PKC. Physiol Rep. 2015;3(11):e12565. 24. NomiyamaR,EmotoM,FukudaN,MatsuiK,KondoM,SakaneA,etal.Protein kinaseC iota facilitates insulin-induced glucose transport by phosphorylation of soluble nSF attachment protein receptor regulator (SNARE) double C2 domain protein b. J Diabetes Investig. 2019;10(3):591-601. 25. Deng B, Zhu X, Zhao Y, Zhang D, Pannu A, Chen L, NiuW. PKC and Rab13 mediate Ca(2+) signal-regulated GLUT4 traffic. Biochem Biophys Res Commun. 2018;495(2):1956-63. 26. O’Neill HM. AMPK and Exercise: Glucose Uptake and Insulin Sensitivity. Diabetes Metab J. 2013;37(1):1-21. 27. Hatakeyama H, Morino T, Ishii T, Kanzaki M. Cooperative actions of Tbc1d1 and AS160/Tbc1d4 in GLUT4-trafficking activities. J Biol Chem. 2019;294(4):1161-72. 28. Hawley JA, Lessard SJ. Exercise training-induced improvements in insulin action. Acta Physiol (Oxf). 2008;192(1):127-35. 29. Kim JH, KimH, Hwang KH, Chang JS, Park KS, Cha SK, et al. WNK1 kinase is essential for insulin-stimulated GLUT4 trafficking in skeletal muscle. FEBS Open Bio. 2018;8(11):1866-74. 30. Bradley H, ShawCS, Bendtsen C, Worthington PL, WilsonOJ, Strauss JA, et al. Visualization and quantitation of GLUT4 translocation in human skeletal muscle following glucose ingestion and exercise. Physiol Rep. 2015;3(5). pii: e12375. 31. Farese RV. Insulin-sensitive phospholipid signaling systems and glucose transport. Update II. Exp Biol Med (Maywood). 2001;226(4):283-95. 32. Khayat ZA, Tong P, Yaworsky K, Bloch RJ, Klip A. Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J Cell Sci. 2000 Jan;113 Pt 2:279-90. 33. Ueda S, Kataoka T, Satoh T. Activation of the small GTPase Rac1 by a specific guanine-nucleotide-exchange factor suffices to induce glucose uptake into skeletal-muscle cells. Biol Cell. 2008;100(11):645–57. 34. Rudich A, Klip A. Putting Rac1 on the Path to Glucose Uptake. Diabetes. 2013;62(6):1831-2. 35. Sylow L, Jensen TE, Kleinert M, Højlund K, Kiens B, Wojtaszewski J, et al. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes. 2013;62(6):1865-75. 36. Chiu TT, Patel N, Shaw AE, Bamburg JR, Klip A. Arp2/3- and cofilin- coordinated actin dynamics is required for insulin-mediated GLUT4 translocation to the surface of muscle cells. Mol Biol Cell 2010;21(20):3529–39. 37. Zorzano A, Palacin M, Guma A. Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta Psychiatr Scand. 2005;183(1):43-58. 38. Spriet LL. New Insights into the Interaction of Carbohydrate and Fat MetabolismDuring Exercise. Sports Med. 2014;44(Suppl 1):87-96. 39. Ropelle ER, Pauli JR, Prada PO, de Souza CT, Picardi PK, Faria MC, et al. Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation. J Physiol. 2006;577(Pt 3):997-1007. 40. Da Silva AS, Pauli JR, Ropelle ER, Oliveira AG, Cintra DE, De Souza CT, et al. Exercise intensity, inflammatory signaling, and insulin resistance in obese rats. Med Sci Sports Exerc. 2010;42(12):2180-8. 41. Peres SB, de Moraes SM, Costa CE, Brito LC, Takada J, Andreotti S, et al. Endurance exercise training increases insulin responsiveness in isolated adipocytes through IRS/PI3-kinase/Akt pathway. J Appl Physiol (1985). 2005;98(3):1037-43. 42. Ross Fiona A, Jensen Thomas E, Hardie D G. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. Biochem J. 2016;473(Pt 2):189-99. 43. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: Implications for human health and disease.Biochem J. 2009;418(2):261-75. 44. Kottakis F, Bardeesy N. LKB1-AMPK axis revisited. Cell research. 2012;22(12):1617-20. 45. Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, et al. Exercise induces isoform-specific increase in 5’AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun. 2000;273(3):1150-5. 46. Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol (1985). 2005;99(1):330-7. 47. Rockl KS, Witczak CA, Goodyear LJ. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life. 2008;60(3):145-53. 48. Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48(7):e245. 49. Flores-Opazo M, Raajendiran A, Watt MJ, Hargreaves M. Exercise serum increases glut4 in human adipocytes. Exp Physiol. 2019;104(5):630-4 50. Fujimoto T, Sugimoto K, Takahashi T, Yasunobe Y, Xie K, Tanaka M, et al. Overexpression of Interleukin-15 exhibits improved glucose tolerance and promotes GLUT4 translocation via AMP-Activated protein kinase pathway in skeletal muscle. BiochemBiophys Res Commun. 2019;509(4):994-1000. 1146

RkJQdWJsaXNoZXIy MjM4Mjg=