ABC | Volume 111, Nº5, Novembro 2018

Artigo de Revisão Silva et al miRNAs e doença cardiovascular Arq Bras Cardiol. 2018; 111(5):738-746 25. Xiao J, Shen B, Li J, Lv D, Zhao Y, Wang F, et al. Serum microRNA-499 and microRNA-208a as biomarkers of acutemyocardial infarction. Int J Clin Exp Med. 2014;7(1):136-41 26. Chen X, Zhang L, Su T, Li H, Huang Q, Wu D, et al. Kinetics of plasma microRNA-499 expression in acute myocardial infarction. J Thorac Dis. 2015;7(5):890-6. 27. Bye A, Røsjø H, Nauman J, Silva GJ, Follestad T, Omland T, et al. Circulating microRNAs predict future fatal myocardial infarction in healthy individuals - The HUNT study. J Mol Cell Cardiol. 2016 Aug;97:162-8. 28. Jia K, Shi P, Han X, Chen T, Tang H, Wang J. Diagnostic value of miR-30d- 5p and miR-125b-5p in acute myocardial infarction. Mol Med Rep. 2016;14(1):184-94. 29. Yan H, Ma F, Zhang Y, Wang C, Qiu D, Zhou K, et al. miRNAs as biomarkers for diagnosis of heart failure: A systematic review and meta-analysis. Medicine (Baltimore). 2017;96(22):e6825. 30. Cakmak HA, Coskunpinar E, Ikitimur B, BarmanHA, Karadag B, Tiryakioglu NO. The prognostic value of circulating microRNAs in heart failure: preliminary results froma genome-wide expression study. J CardiovascMed (Hagerstown). 2015;16(6):431-7. 31. Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18(5):457-68. 32. Lakschevitz F, Aboodi G, Tenenbaum H, Glogauer M. Diabetes and periodontaldiseases: interplayand links.CurrDiabetesRev.2011;7(6):433-9. 33. Harling L, Lambert J, Ashrafian H, Darzi A, Gooderham NJ, Athanasiou T. Elevated serummicroRNA 483-5p levels may predict patients at risk of post- operative atrial fibrillation. Eur J Cardiothorac Surg. 2017;51(1):73-8. 34. Feldman A, MoreiraDA, GunC,WangHL, HirataMH, de Freitas Germano J, et al. Analysis of circulatingmiR-1, miR-23a, andmiR-26a in atrial fibrillation patients undergoing coronary bypass artery grafting surgery. Ann Hum Genet. 2017;81(3):99-105. 35. Wei XJ, Han M, Yang FY, Wei GC, Liang ZG, Yao H, et al. Biological significance of miR-126 expression in atrial fibrillation and heart failure. Braz J Med Biol Res. 2015;48(11):983-9. 36. GorenY,MeiriE,HoganC,MitchellH,LebanonyD,SalmanN,etal.Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. Am J Cardiol. 2014;113(6):976-81. 37. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. DeliveryofmicroRNA-126byapoptoticbodies inducesCXCL12-dependent vascular protection. Sci Signal. 2009;2(100): 81. 38. Jeong HS, Kim JY, Lee SH, Hwang J, Shin JW, Song KS, et al. Synergy of circulating miR-212 with markers for cardiovascular risks to enhance estimation of atherosclerosis presence. PLoS One. 2017;12(5):e0177809. 39. Liu CZ, ZhongQ, Huang YQ. Elevated plasmaMiR-29a levels are associated with increased carotid intima-media thickness in atherosclerosis patients. Tohoku J Exp Med. 2017;241(3):183-8. 40. Piubelli C, Meraviglia V, Pompilio G, D’Alessandra Y, Colombo GI, Rossini A. microRNAs and Cardiac Cell Fate. Cells. 2014;3(3):802-23 41. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle- specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214-20. 42. Carmean CM, Bobe AM, Yu JC, Volden PA, Brady MJ. Refeeding-induced brown adipose tissue glycogen hyper-accumulation in mice is mediated by insulin and catecholamines. PLoS One. 2013;8(7):e67807. 43. ThumT, Gross C, Fiedler J, Fischer T, Kissler S, BussenM, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980-4 44. Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2007;42(6):1137-41. 45. Tony H, Meng K, Wu B, Yu A, Zeng Q, Yu K, et al. MicroRNA-208a Dysregulates Apoptosis Genes Expression and Promotes Cardiomyocyte Apoptosis during Ischemia and Its Silencing Improves Cardiac Function after Myocardial Infarction. Mediators Inflamm. 2015;2015 Nov 25:479123. 46. Lee SY, Lee CY, Ham O, Moon JY, Lee J, Seo HH, et al. microRNA-133a attenuates cardiomyocyte hypertrophy by targeting PKCdelta and Gq. Mol Cell Biochem. 2018;439(1-2):105-15 47. Wu Y, Wang YQ, Wang BX. [MicroRNA-133a attenuates isoproterenol- induced neonatal rat cardiomyocyte hypertrophy by downregulating L-type calciumchannelalpha1Csubunitgeneexpression.]ZhonghuaXinXueGuan Bing Za Zhi. 2013;41(6):507-13. 48. Wang YS, Zhou J, Hong K, Cheng XS, Li YG. MicroRNA-223 displays a protective role against cardiomyocyte hypertrophy by targeting cardiac troponin I-interacting kinase. Cell Physiol Biochem. 2015;35(4):1546-56. 49. Bao Q, Chen L, Li J, Zhao M, Wu S, Wu W, et al. Role of microRNA-124 in cardiomyocyte hypertrophy inducedby angiotensin II. Cell Mol Biol (Noisy- le-grand). 2017;63(4):23-27. 50. Shieh JT, Huang Y, Gilmore J, Srivastava D. ElevatedmiR-499 levels blunt the cardiac stress response. PLoS One. 2011;6(5):e19481 51. Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs inmyocardial matrix remodeling. Circ Res. 2009;104(2):170-8, 52. He Q, Wang CM, Qin JY, Zhang YJ, Xia DS, Chen X, et al. Effect of miR- 203 expression on myocardial fibrosis. Eur Rev Med Pharmacol Sci. 2017;21(4):837-42. 53. Lai KB, Sanderson JE, Izzat MB, Yu CM. Micro-RNA and mRNA myocardial tissue expression in biopsy specimen from patients with heart failure. Int J Cardiol. 2015 Nov 15;199:79-83. 54. ChengR,DangR,ZhouY,DingM,HuaH.MicroRNA-98 inhibitsTGF-beta1- induced differentiation and collagen production of cardiac fibroblasts by targeting TGFBR1. Hum Cell. 2017;30(3):192-200. 55. Ikeda S, Kong SW, Lu J, Bisping E, ZhangH, Allen PD, et al. AlteredmicroRNA expression in human heart disease. Physiol Genomics. 2007;31(3):367-73. 56. Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613-8. 57. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13(4):486-91. 58. Galkina E, Ley K. Immune and inflammatorymechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27:165-97. 59. Fang Y, Shi C, Manduchi E, CivelekM, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107(30):13450-5. 60. Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, et al. MicroRNA- 181b regulates NF- κ B-mediated vascular inflammation. J Clin Invest. 2012;122(6):1973-90. 61. Suárez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184(1):21-5. 62. Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570-3. 63. Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121(7):2921-31. 64. Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896-9. 745

RkJQdWJsaXNoZXIy MjM4Mjg=