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Abstract
Cardiovascular disease (CVD) is currently the leading cause 

of death in Brazil and worldwide. In 2016, CVD accounted 
for more than 17 million deaths, representing 31% of all 
deaths globally. Molecular and genetic mechanisms may be 
involved in vascular protection and should be considered in 
new therapeutic approaches. In this sense, recent studies have 
reported that brain-derived neurotrophic factor (BDNF) is 
reduced in individuals predisposed to develop CVD, and that 
aerobic physical training increases the amounts of circulating 
BDNF. BDNF is a neurotrophin found at high concentrations 
in the hippocampus and cerebral cortex and is considered a 
key molecule for the maintenance of synaptic plasticity and 
survival of neuronal cells. In addition to neuronal plasticity, 
BDNF is also important in vascular function, promoting 
angiogenesis through the regulation of reactive oxygen species 
(ROS). However, a variant of the BDNF gene in humans, 
the Val66Met polymorphism (substitution of the amino 
acid valine for a methionine at position 66 of the codon), 
occurring in 20-30% of the Caucasian population, may affect 
plasma BDNF concentrations and its activity in all peripheral 
tissues containing tyrosine kinase B receptors (TrkB), such as 
the endothelium. Thus, we will present a discussion about 
the role of serum BDNF levels in cardiovascular protection, 
Val66Met genetic variant in vascular reactivity and the effect 
of physical exercise.

Introduction
The main causes of death from noncommunicable 

diseases are cardiovascular diseases (CVD). Across the 
world, CVD deaths increased 12.5% between 2005 and 
2015, reaching 17.9 million deaths.1 In Brazil, CVD 
mortality accounted for 28% of all deaths in the last five 
years, accounting for 38% of all deaths in the productive 
age range (18 to 65 years).2

The most relevant CVD in terms of public health are heart 
(coronary artery disease and heart failure) and cerebrovascular 
diseases. Risk factors for CVD are well known (among them, 
obesity, dyslipidemia, diabetes and sedentary lifestyle). 
However, its molecular basis is complex and is linked to a 
wide range of biological pathways, including lipid and glucose 
metabolism, inflammation, vascular repair and angiogenesis.

The main etiology of CVD is atherosclerosis, a complex 
chronic inflammatory process of the arterial wall that involves 
the recruitment and activation of cells in the lesion of the 
intima layer. This endothelial cell activation by inflammatory 
cytokines and oxidized lipoproteins, followed by increased 
adhesion of circulating blood monocytes to the endothelium 
and migration of vascular smooth muscle cells into the 
developing neointimal layer, leads to the development of the 
atherosclerotic plaque, progressively obstructing the vascular 
lumen and reducing blood flow.3 In addition, atherosclerosis 
occurs in endothelial dysfunction, characterized by reduced 
bioavailability of nitric oxide (NO) on the wall of blood vessels.4

Endothelial dysfunction is a marker of cardiovascular 
risk and is present in CVD such as hypertension, coronary 
artery disease and chronic heart failure.5 Several factors have 
been associated with the endothelium-dependent blood 
flow modulation, such as the bioavailability of L-arginine, 
tetrahydrobiopterin (BH4), LDL-cholesterol and vascular 
endothelial growth factor (VEGF) levels, among others.4

Although the brain-derived neurotrophic factor (BDNF) 
is directly related to the health of neurons,6 translational 
and clinical experimental studies have demonstrated their 
strong association with the vascular system. In fact, initially 
neurotrophins had their actions identified basically in the 
development and maturation of the nervous system. However, 
since the late 1990s, strong evidence has emerged in the 
literature that neurotrophins are implicated in important 
cardiovascular functions.7 More recently, an important study 
has demonstrated the association of circulating BDNF to 
the vascular system, specifically angiogenesis, through the 
regulation of reactive oxygen species (ROS).8 Thus, in addition 
to the nervous system function, accumulated evidence suggests 
that BDNF is also important for the cardiovascular system. 

Because of the association between BDNF and angiogenesis, 
increased vasodilation and tissue perfusion, this neurotrophin 
is another important link between lifestyle and vascular health, 
with repercussions on brain structure and cognitive function in 
older adults.9 A lifestyle that includes cognitive engagement, 
regular exercise, and a healthy diet is a key strategy to maintain 
brain health during the aging process.9 

In this context, several studies have shown that exercise is 
one of the main factors in increasing serum BDNF levels10-12 
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and that increasing BDNF levels is the key element that links 
exercise to cognitive benefits.13 However, variations in the 
levels of circulating BDNF, including its increase in response 
to physical training,12 can be explained by a genetic variant 
of BDNF, a functional single-nucleotide polymorphism (SNP), 
responsible for the substitution of the amino acid Valine 
to Methionine at position 66 of the codon. The Val66Met 
polymorphism, a condition that occurs in 20-30% of the 
Caucasian population,14-16 impairs both regulated secretion 
and intracellular traffic of BDNF.14,17 These new findings 
have opened a new field of research in cardiovascular and 
therapeutic medicine.

Brain-Derived Neurotrophic Factor (BDNF)
BDNF is the most expressed neurotrophin in the central 

nervous system, found at high concentrations in the 
hippocampus and cerebral cortex. It is a key molecule involved 
in the maintenance of synaptic plasticity and synaptogenesis 
of the hippocampus, a site of memory acquisition and 
consolidation.18,19 The altered production and secretion of 
BDNF have been demonstrated in several neurodegenerative 
disorders , such as Alzheimer’s and Parkinson’s disease.20-22 
In cognitively normal individuals, the concentration of BDNF 
in the cerebrospinal fluid decreases throughout life in the 
absence of dementia, and a lower concentration of BDNF in 
the cerebrospinal fluid was strongly associated with impaired 
memory and lower executive function.23 Current knowledge 
points to the fact that abnormal cognition is associated with 
BDNF decrease in the hippocampus, which is a determining 
factor in the impairment of factors such as learning skills, 
depression, mood, anxiety disorders and schizophrenia.24 

While BDNF promotes neuronal survival and enhances 
synaptic plasticity by activating its tyrosine kinase receptor B 
(TrkB), its precursor, proBDNF, acts antagonistically, resulting 
in cell apoptosis when interacting with the p75 receptor of 
neurotrophins (p75NTR). This important function demonstrates 
that both are involved in different physiological functions.25,26

The BDNF is produced presynaptically in the cell bodies 
of the sensory neurons projected in the dorsal horn, whereas 
in the hippocampus it is produced predominantly by the 
postsynaptic dendrites.22,27,28 Peripherally, serum BDNF is 
found in blood plasma platelets and consists of vascular 
endothelial cells and peripheral mononuclear blood cells.29,30 
Its therapeutic potential is characterized by its ability to freely 
cross the blood-brain barrier in both directions via high 
saturation capacity of the carrier system.22,30,31 In the peripheral 
nervous system, BDNF still plays an additional role, acting on 
axonal regeneration. It is worth mentioning that the BDNF 
gene and its TrkB receptor are expressed not only in the brain, 
but also in other parts of the body, such as the heart, lungs and 
endothelial tissue, 26,32,33 demonstrating its function in other 
organs and tissues of the body.

The BDNF gene is located on the short arm (p) of 
chromosome 11 (11p13) and comprises 11 exons and 9 
functional promoters.34 

A naturally-occurring functional polymorphism in the 
human BDNF gene at nucleotide 196 (G/A) encodes a 
substitution of amino acid valine to methionine at position 

66 (Val66Met or Met66Met), which besides resulting in lower 
production and circulating amounts of BDNF,14 has been 
associated with greater susceptibility to neurodegenerative 
disorders. Functionally, the Met66Met and Val66Met 
polymorphisms cause impairments in the intracellular traffic 
and in regulated secretion in neurons.14,17

In fact, the inheritance of this polymorphism has been 
associated with poor cognitive performance in healthy 
elderly individuals35 and memory impairment of individuals.14 
Additionally, the Val66Met polymorphism leads to 4 to 11% 
lower hippocampal volume observed by magnetic resonance 
imaging in healthy adults.23

BNDF and Cardiovascular Function
The link between heart disease and cognitive impairment 

has been reported in the literature.36,37 Some authors believe 
that the mechanism of “cardiogenic dementia” involves 
chronic cerebral hypoperfusion caused by the reduction in 
cardiac output due to various cardiovascular diseases.38,39 
Although the association between cognitive disorders and 
cardiovascular risk factors is a complex one and possibly 
mediated by different mechanisms, the presence of clinically 
manifest or silent cerebral microvascular changes are 
involved. In addition, a recent study24 provided new insights 
into the potential molecular mechanism by which heart 
disease induces brain dysfunction. These authors, studying 
a transgenic mouse model that has specific microRNA-1-2 
(miR-1-2) cardiac overexpression, have observed that cardiac 
overexpression of miR-1 also induced behavioral abnormalities 
that are associated with the negative regulation of BDNF 
expression in the hippocampus. A broader understanding of 
how heart disease affects cognitive function may lead to new 
therapeutic strategies.

The importance of circulating levels of BDNF in 
cardiovascular protection was evident in the prospective 
cohort study of the Framingham Heart Study (FHS).40 To 
evaluate a potentially causal association between the levels 
of BDNF and CVD, a Mendelian randomization analysis was 
performed using the goals of the CARDIoGRAM (Coronary 
Artery Disease Genome-Wide Replication and Meta-Analysis) 
study. In this study, conducted with a large community-based 
sample, the researchers observed that higher levels of BDNF 
are associated with a lower risk of cardiovascular events and 
death, regardless of the standard risk factors, including low-
grade inflammation markers, body mass index (BMI), physical 
activity and depression.40

In fact, an important role of BDNF in the cardiovascular 
system is the promotion of vascular angiogenesis and increase 
in capillary density.41 Studies have shown that BDNF acts on 
endothelial cells promoting neovascularization in response to 
hypoxic stimuli via the Akt pathway.42-44

The first evidence of BDNF involvement in the angiogenesis 
process came from the study by Donovan et al.45 about the 
development of the embryonic myocardium, in which it was 
shown that the overexpression of BDNF is associated with an 
increase in capillary density. Recently, an elegant experimental 
study demonstrated for the first time that BDNF promotes the 
formation of angiogenic tubes through the generation of ROS 
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derived from NADPH oxidase (NOX) by TrkB receptor signal 
transduction, probably via Akt activation , resulting in the 
migration of endothelial cells.8 The study suggests that: TrkB 
⇒ NADPH oxidase 2 (Nox2) ⇒ ROS ⇒ Phosphoinositide 
3-kinase (PI3K)/Akt. 8

In fact, BDNF has been consistently implicated in the 
angiogenesis and maintenance of vascular integrity. Specifically 
in the endothelium, besides the binding of BDNF to its high 
affinity receptor TrkB,25,46 there is also the expression of the 
p75 receptor, of which binding to the pro-BDNF has been 
related to vascular smooth muscle apoptosis.47,48 Considering 
the conjugated localization of BDNF-TrkB and pro-BDNF-p75 
in the endothelium and due to the antagonistic physiological 
action between BDNF and pro-BDNF, it is important to take into 
account the balance between plasticity/survival and apoptosis 
in peripheral blood flow through the BDNF/pro-BDNF ratio. 

More recently, the link between this neurotrophic and 
cardiovascular protection was evidenced in the study by 
Okada et al,49 conducted with conditional BDNF-knockout 
mice, in which BDNF expression was systemically reduced. 
In this study, the authors demonstrated that a mechanism 
mediated by the Central Nervous System is involved in the 
regulation of cardiac function after myocardial infarction. 
Ischemic insults are transmitted from the heart to the Central 
Nervous System through afferent cardiac fibers after the 
myocardial infarction, thereby increasing BDNF neuronal 
expression. An increase in circulating BDNF promotes the 
survival of cardiomyocytes and is associated with increased 
expression of pro-angiogenic factors. Comparatively, knockout 
animals had greater myocardial damage after the experimental 
infarction compared to wild-type mice.49

In this context, the Val66Met polymorphism can affect 
serum concentrations of BDNF and, consequently, influence 
the activity of tissues containing TrkB receptors, be they neurons 
or even peripheral tissues, such as vascular endothelial cells.

BDNF and Cognitive Effects of Exercise
There is much evidence that physical exercise, especially 

aerobic exercise, has a beneficial effect on cognitive domains, 
particularly on executive and memory functions and reduces 
hippocampal atrophy in late adulthood, with BDNF being 
heavily involved.11,50-57

Epidemiological and intervention studies reinforce the 
idea of using physical activity as a strategy to increase 
neuroplasticity in pathological conditions.58 Several 
studies have shown that exercise not only causes structural 
changes in the brain, but also protects against aging-related 
cognitive decline.57,59

Physical exercise activates molecular and cellular cascades 
that promote neuronal plasticity and neurogenesis, inducing 
expression of the gene encoding BDNF.10,60 Peripheral 
concentrations of BDNF increase in both acute and chronic 
aerobic exercise, and the magnitude of this increase seems 
to be dependent on exercise intensity.61 

In addition, greater cognitive benefits are obtained when 
the duration of the program and the exercise session are 
longer, individuals are older, with greater benefits for women 
than for men.56 The difference between genders regarding 

BDNF levels in cerebrospinal fluid in favor of women may 
be due to hormonal effects,23 since estrogen receptors are 
located in cells expressing BDNF and its TrkB receptor, so that 
estrogen regulates the expression of BDNF.62 

Interestingly, this benefit of exercise occurs even in 
young adult men. This was evidenced in a cohort study of 
young Swedish men enlisted in military service at age 18 
(n=1,221,727),50 in which a significant positive association 
was found between cardiovascular fitness and cognitive 
performance after adjusting for relevant confounders.

Largely, the benefits of exercise on the production of BDNF 
and neuronal plasticity are related to increased cerebral and 
muscle vascularization. In fact, in a recent review63 the authors 
have shown that the cognitive benefits of good cardiovascular 
fitness are related to increased cerebral circulation and 
angiogenesis. This important adaptation allows increased flow 
and upregulation of neurotrophins in the neurogenic niche 
of the hippocampus, a phenomenon that occurs even after 
acute exercise sessions.63

Specifically, studies on the acute and chronic effects of 
exercise on serum BDNF concentration still yield controversial 
results. For example, in a study comparing the chronic and 
acute effects of physical exercise on the serum concentrations 
of BDNF, it was demonstrated that a single exercise session was 
able to induce a transient increase in BDNF levels, but the same 
results were not achieved after a longer period of training.64 
On the other hand, in another study where the sample was 
submitted to 6 months of training, a trend in an increase 
in serum BDNF concentration was found, in addition to an 
improvement in cognitive function.65 A similar result was found 
in a longitudinal study with the elderly, which resulted in an 
increase in the volume of hippocampal parts and, according to 
the authors, this fact is related to the increase in BDNF levels.51

These apparently controversial results may be dependent 
on the duration of the exercise benefits, specifically on post-
exercise BDNF plasma levels, i.e., whether they occur soon 
after a single session of acute exercise, after a session of a 
regular exercise program (showing changes in BDNF release 
after repeated exercise sessions) or changes in resting BDNF 
levels after a regular exercise program.66 Indeed, this was 
evidenced in the recent meta-analysis on the effects of exercise 
on serum BDNF,66 which concluded that regular exercise 
intensified the effect of an exercise session on BDNF levels 
(Hedges’ g =0.59; P=0.02). However, the results indicated 
a lower effect of regular exercise on resting BDNF levels 
(Hedges’ g =0.27; P=0.005). There is reliable evidence from 
human studies indicating that each exercise episode results in 
a BDNF dose response and that the magnitude of this response 
can be increased over time through regular exercise.66

There is a large body of evidence that demonstrates that 
exercise works on several powerful neuroprotective pathways 
that can converge to promote continued brain health into 
senescence. These benefits occur either in response to acute 
activities or in regular practice and occur both in response 
to high-intensity exercises and in moderate-intensity aerobic 
exercises, increasing levels of circulating neurotrophic factors 
and neurotransmission, exerting beneficial effects on mood 
and cognitive functions in individuals of all ages.
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BDNF and Cardiovascular Effects of Exercise
In the cardiovascular system, BDNF is involved, at least 

in part, in vascular endothelial benefits. In addition, a recent 
study found that active older men have significantly higher 
plasma BDNF levels compared to their inactive peers. 
In this study, BDNF correlated with VO2max (R=0.765, 
p<0.001). Additionally, there was an inverse correlation 
between BDNF and the atherogenic index (TC / HDL), 
hsCRP and oxLDL. These findings demonstrate that a higher 
level of cardiorespiratory fitness is associated with a higher 
level of circulating BDNF, which in turn is related to lower 
cardiovascular risk.67

However, it is possible that polymorphisms may influence 
the beneficial effects of exercise. We have recently observed 
that peripheral vascular reactivity and serum BDNF responses 
to physical training are impaired by the BDNF Val66Met 
polymorphism, a responsiveness that is associated with serum 
BDNF concentrations in healthy individuals.12

Considering all of the above, the importance of physical 
exercise in promoting brain and cardiovascular health is 
gaining recognition, whether in the physiological condition 
of the brain aging process or in individuals affected by 
the early stages of neurodegeneration. In fact, the various 
animal and human studies suggest that physical activity 
may reduce the risk of cognitive decline, and therefore, 
an active lifestyle may be considered a preventive strategy 

for brain health deterioration, just as it occurs with 
cardiovascular dysfunction.

Undoubtedly, with increasing longevity, long-term 
preventive approaches, with an emphasis on promoting 
positive health habits that delay cognitive decline and 
its progression, are increasingly important. It is worth 
remembering that in addition to modulating the internal brain 
environment, the regular practice of physical exercise acts 
directly on the cardiovascular, immune and metabolic systems, 
playing an essential role in a healthy lifestyle. 
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