ABC | Volume 114, Nº2, February 2020

Update Update of the Brazilian Guideline on Nuclear Cardiology – 2020 Arq Bras Cardiol. 2020; 114(2):325-429 doses mentioned in previous studies. It was confirmed that the CZT camera protocol showed similar prognostic results when compared to those obtained with traditional SPECT cameras, emphasizing that patients with MPS on CZT had a lower events rate than those who underwent MPS with traditional gamma cameras. Evolution of software: Filtered back-projection (FBP) is a traditional reconstruction algorithm in LV imaging, which has was used in many SPECT gamma cameras over time. It considers that the radiation emitting object, in this case the heart, is at the same distance from all detectors and that the photons are also uniformly detected at all angles. This supposition, however, leads to a large number of image artifacts, which may be caused by breast attenuation and loss of counting density at higher distance from the heart, for example. FBP, thus, presents limitations that lead to the development of new iterative reconstruction images, which allow for the correction of these inherent artifacts. 302 New algorithms have been developed, the most widely used of which is known as ordered subset expectation maximization (OSEM). This iterative reconstruction technique is based on estimated projection of the object studied, with additional comparison between the acquired and estimated projections of the object. The projection of proportion is generated, containing the differences between real and estimated projections of the object. These differences are used to modify initial estimation, and every cycle in this chain is called an iteration. Iterations are carried out until a projection more similar to the real object has been achieved. Iterative reconstruction allows for correction of image artifacts, such as dispersion, attenuation, and noise suppression during the reconstruction process, in order to improve image quality and resolution. 303 DePuey et al. 304 described the use of OSEM for processing exams with different acquisition periods (7 to 15 minutes) performedwith a dual-head gamma camerawith high resolution collimators. It was demonstrated that, notwithstanding lower time, image quality was maintained or even improved by the use of these reconstruction methods. Additionally, in a Brazilian study, Lima et al. 305 analyzed prognostic accuracy of a new reconstruction algorithm, “Evolution for Cardiac TM,” with reduced dose and acquisition time in a dedicated gamma camera (Ventri, GE Healthcare), with an average dosimetry of 6.2 ± 0.3 mSv. The 2,958 patients who underwent exams were followed for approximately 3 years, and their results demonstrated a very low rate of major events (death or infarction), when imaging was normal in comparison with the group with abnormal imaging exams. New perspectives: MPS may have some imaging limitations in patients with multivessel CAD, due to loss of comparative perfusion parameters between different areas of the myocardium, considering that image generation is based on relative uptake of coronary flow labeled with radiopharmaceuticals between the walls of the LV, as described in the introduction to these Guidelines. Given this situation, quantification of absolute coronary flow and coronary flow reserve (CFR) has arisen as an important alternative for diagnostic and prognostic evaluation of these patients. Falcão et al. 306 demonstrated that evaluation of flow reserve via PET assists in the detection of CAD in patients who have left bundle branch blocks. Patients with apparently normal perfusion and abnormal CFR have higher annual rates of cardiac death, non-fatal myocardial infarction, late revascularization, and hospitalization due to cardiac causes than patients with normal perfusion and normal CFR (6.3% versus 1.4%; p < 0.05). 307 Ziadi et al. 308 have expanded these results in a prospective study involving 704 patients who underwent injection with rubidium-82 ( 82 Rb) for PET, with the objective of comparing results in patients with reduced or normal CFR and patients with normal or abnormal perfusion exams. Reduced CFR was an independent predictor of major events, including cardiac death and myocardial infarction, adding prognostic value to the perfusion results. Murthy et al. 309 studied the predictive power of CFR in 2,783 consecutive patients, observing a 5.6- fold increase in the risk of cardiac death in patients with lower CFR values, compared to patients with higher values. This variable showed incremental prognostic value in comparison to relative analysis of perfusion and LVEF. The prognostic value of myocardial flow reserve (MFR) as a variable goes beyond CAD. This has been demonstrated in patients with ischemic and non-ischemic cardiomyopathy, 310 hypertrophic cardiomyopathy, 311 and post-cardiac transplant. 312 The measure of coronary flow reserve using PET is quite accurate, but as it is expensive, it is not widely available in clinical practice, especially in Brazil. However, as SPECT technology is an easily accessible tool, studies show the possibility of acquiring dynamic images and quantifying MFR with this method, with some limitations, however, when using traditional gamma cameras, including limited temporal resolution. 313,314 With the advent of CZT cameras, it has become viable to quantify CFR using this technology. Wells et al. 315 developed a pig model for measuring absolute myocardial blood flow and flow reserve, using three different radioisotopes, namely, 201 Tl, Tetrofosmin- 99m Tc and Sestamibi- 99m Tc. Following in this research area, Bouallègue et al. 316 obtained CFR in 23 patients with known three-vessel disease using a CZT gamma camera, successfully obtaining good correlation with angiographic findings. New discoveries related to dynamic SPECT image acquisition with measurements of CFR are opening new and exciting research fields that will allow for different applications of SPECT to the extent that their results are better validated. 12. Strategies for Reducing Exposure to Radiation Ionizing radiation refers to radiation with enough energy to “ionize” atoms and molecules during its interaction with matter, in this case, with elements in the human body. Depending on the type and level of energy used, on the duration of exposure, and on the dose absorbed, damage to the organism may occur. Professionals involved in medical exams or therapies that make use of ionizing radiation should be familiar with the basics of what is known as the “ a s l ow a s r easonably a chievable” (ALARA) principle. This stipulates that an individual’s exposure to radiation must be minimized, regardless of reason for exposure. In relation to 395

RkJQdWJsaXNoZXIy MjM4Mjg=