ABC | Volume 114, Nº2, February 2020

Update Update of the Brazilian Guideline on Nuclear Cardiology – 2020 Arq Bras Cardiol. 2020; 114(2):325-429 In contrast, a recent multicenter prospective randomized study, known as the Surgical Treatment for Ischemic Heart Failure (STICH) study, 288 was unable to show benefits regarding mortality between patients randomized into revascularization surgery (CABG), in comparison with optimized medical therapy (OMT), in primary intention-to- treat analysis, for patients with dilated cardiomyopathy (LVEF ≤ 35%) of ischemic etiology (the first of 2 tested hypotheses, involving 99 centers in 22 countries). SPECT and/or Doppler echocardiography, associated with a low dose of dobutamine, were used to characterize viability, based on established methodological criteria. Of the 1,212 patients included for evaluation, 601 underwent the aforementioned viability studies, comparing 298 receiving medical therapy and surgical revascularization (CABGGroup) to 303 patients with OMT. Of the total of 478 patients with viable myocardium, the outcome of death occurred in 178 (37%), in contrast with 58 (51%) of deaths in 114 patients without viability (hazard ratio: 0.64; 95% CI: 0.48–0.86; p = 0.003). However, after adjusting for other baseline variables, the association with mortality was not significant (p = 0.21). There was significant crossover between the 2 groups and the analysis in question was in favor of better results with CABG. In spite of these negative findings, recognizing biases in critical analysis of the results in this occasion, it is understood that, in the real world, faced with current evidence, 289-291 viability study may be of assistance when choosing the best treatment in selected populations, leading to better prognosis in evolution. 11. New Technologies and Future Perspectives for Nuclear Cardiology in Studying Ischemic Heart Disease Established experience and extensive documentation, which has been accumulated over the past decades, have demonstrated that MPS has satisfactory sensitivity and specificity, emphasizing good NPV for ruling out obstructive CAD. Analysis of 32 studies has shown that SPECT has a sensitivity of 87% and a specificity of 73% for detecting significant angiographic lesions (stenosis > 50%). 292 Some limitations to the conventional technique have been observed, such as restricted spatial resolution, reduced counting rates, and attenuation of artifacts. Anger gamma cameras with sodium iodide crystals and photomultipliers, which transform emitted gamma photons into light or scintillation, also have limited temporal resolution in comparison with other imaging methods, such as PET, and they require higher doses of radiotracers, besides to carry out exams with longer image acquisition times. On the other hand, the innumerous advantages of the nuclear method include: a) the utilization of radioisotopes that do not alter the biological properties of the organism being studied; b) high radioactive labeling with a minimal amount of chemical substances, faithfully representing physiology and cellular biochemistry; c) minimal toxicity; d) pixel (smallest component of a digital image) values of myocardial images are directly proportional to parameters inherent in cardiovascular physiology, such as perfusion, function, metabolism, and innervation, attributes which are not shared by other modalities, such as angio- CT, cardiac resonance, and echocardiography; e) another aspect which stands out is the superior contrast resolution for detecting perfusion abnormalities, differentiating normal and hypoperfusion myocardium with great accuracy, facilitating visual and quantitative image analysis. 29,293 Evolution of hardware: As exposure to radiation and its long-term deleterious effects have become important concerns on the part of regulatory authorities and scientific societies, new technologies have been introduced to reduce doses of radiotracers in nuclear exams while maintaining image quality and diagnostic accuracy . In this context, new equipment with CZT detectors arose in the first decade of 2000. Differently from traditional Anger gamma cameras, gamma radiation is directly converted to electric pulses upon contact with the CZT detectors, increasing energy resolution and dispensing with photomultipliers, which makes the detectors much finer and lighter . They are also distinct from older conventional cameras in terms of better spatial and energy resolution and the ability to distinguish dispersed radiation, in addition to being more sensitive for detection of emitted photons. 294-296 Duvall et al. 297 have shown the viability of a reduced-dose protocol and of reduced doses in a study carried out with a dedicated CZT gamma camera (Discovery NM 530c, GE Healthcare), using 5 mCi of 99m Tc as a resting dose and 15 mCi of 99m Tc as stress dose to label sestamibi or tetrofosmin. There was a significant reduction in exposure to radiation in relation to anterior SPECT protocols, and image quality and accuracy for diagnosing CAD were maintained. Gimelli et al. 298 have also evaluated the viability of a stress-resting protocol with a reduced dose, used a CZT camera in a cohort of 137 patients referred for evaluation of CAD, with subsequent coronary cineangiography . Accuracy for identifying coronary lesions was not affected by reduced radioisotope dosage, and high sensitivity and specificity values were obtained. Hindorf et al. 299 showed that the ideal patient position should be established when performing myocardial exams with CZT gamma cameras.   In addition to evaluating diagnostic accuracy, it has become important to evaluate prognostic value of new imaging protocols using CZT cameras. Oldan et al. 300 compared prognostic value between CZT and conventional gamma cameras, observing that prognostic information provided by CZT technology, regarding the outcome composed of all-case mortality and non-fatal AMI, was similar to that provided by traditional equipment (Anger camera). The same dose, however, was administered to both gamma-camera groups . This fact limited the study’s ability to evaluate prognostic value with reduced-dose protocols, as previously described.  Brazilian researchers 301 compared the prognostic values of an ultrafast low-dose protocol with a CZT camera and a traditional protocol with a conventional gamma camera with sodium iodide crystals. By means of a propensity score, 2 groups with equal numbers of patients and similar baseline characteristics were compared. The average dose of radiation in the first group (which underwent the exam with a conventional camera) was estimated at 9.5 mSv, whereas the CZT group had an average exposure dose of around 6 mSv. This dose was lower than the effective average SPECT 394

RkJQdWJsaXNoZXIy MjM4Mjg=