ABC | Volume 113, Nº6, December 2019

Review Article Ferrari et al. Exercise-mediated glucose uptake Arq Bras Cardiol. 2019; 113(6):1139-1148 42. Ross Fiona A, Jensen Thomas E, Hardie D G. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. Biochem J. 2016;473(Pt 2):189-99. 43. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: Implications for human health and disease. Biochem J. 2009;418(2):261-75. 44. Kottakis F, Bardeesy N. LKB1-AMPK axis revisited. Cell research. 2012;22(12):1617-20. 45. Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, et al. Exercise induces isoform-specific increase in 5’AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun. 2000;273(3):1150-5. 46. Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol (1985). 2005;99(1):330-7. 47. Rockl KS, Witczak CA, Goodyear LJ. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life. 2008;60(3):145-53. 48. Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48(7):e245. 49. Flores-Opazo M, Raajendiran A, Watt MJ, Hargreaves M. Exercise serum increases glut4 in human adipocytes. Exp Physiol. 2019;104(5):630-4 50. Fujimoto T, Sugimoto K, Takahashi T, Yasunobe Y, Xie K, Tanaka M, et al. Overexpression of Interleukin-15 exhibits improved glucose tolerance and promotes GLUT4 translocation via AMP-Activated protein kinase pathway in skeletal muscle. BiochemBiophys Res Commun. 2019;509(4):994-1000. 51. Cartee GD. AMPK-TBC1D4–Dependent Mechanism for Increasing Insulin Sensitivity of Skeletal Muscle. Diabetes. 2015;64(6):1901-3. 52. Vind BF, Pehmoller C, Treebak JT, Birk JB, Hey-Mogensen M, Beck- Nielsen H, et al. Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training. Diabetologia. 2011;54(1):157-67. 53. Castorena CM, Arias EB, Sharma N, Cartee GD. Postexercise improvement in insulin-stimulated glucose uptake occurs concomitant with greater AS160 phosphorylation inmuscle fromnormal and insulin-resistant rats. Diabetes. 2014;63(7):2297-308. 54. KjobstedR,WojtaszewskiJF,TreebakJT.RoleofAMP-ActivatedProteinKinase for Regulating Post-exercise Insulin Sensitivity. EXS. 2016Nov;107:81-126. 55. Olesen J, Ringholm S, Nielsen MM, Brandt CT, Pedersen JT, Halling JF, et al. Role of PGC-1alpha in exercise training- and resveratrol-induced prevention of age-associated inflammation. Exp Gerontol. 2013;48(11):1274-84. 56. McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, Kemp BE, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes. 2008;57(4):860-7. 57. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell. 2014;159(4):738-49. 58. Sylow L, Jensen TE, Kleinert M, Højlund K, Kiens B, Wojtaszewski J, et al. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes. 2013;62(6):1865-75. 59. Zhou Y, Jiang D, Thomason DB, Jarrett HW. Laminin-induced activation of Rac1 and JNKp46 is initiated by Src family kinases andmimics the effects of skeletal muscle contraction. Biochemistry. 2007;46(51):14907-16. 60. Sylow L, Nielsen IL, Kleinert M, Møller LL, Ploug T, Schjerling P, et al. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. J Physiol. 2016;594(17):4997-5008. 61. Peppler WT, MacPherson RE. Rac1 is a novel regulator of exercise-induced glucose uptake. J Physiol. 2016;594(24):7155-6. 62. Sylow L, Møller LL, D’Hulst G, Schjerling P, Jensen TE, Richter EA. Rac1 in Muscle Is Dispensable for Improved Insulin Action After Exercise in Mice. Endocrinology. 2016;157(8):3009-15. 63. Sylow L, Kleinert M, Pehmøller C, Prats C, Chiu TT, Klip A, et al. Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell Signal. 2014;26(2):323-31 64. Sylow L, Møller LLV, Kleinert M, D’Hulst G, De Groote E, Schjerling P, et al. Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise. Diabetes. 2017;66(6):1548-59. 65. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3-12. 66. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 2012;481(7382):511-5. 67. Dagon Y, Mantzoros C, KimYB. Exercising insulin sensitivity: AMPK turns on autophagy! Metabolism. 2015;64(6):655-7. 68. Rocchi A, He C. Activating Autophagy by Aerobic Exercise inMice. J Vis Exp. 2017;(120).e55099. 69. Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15(7):713-20. 70. TamBT, Siu PM. Autophagic cellular responses to physical exercise in skeletal muscle. Sports Med. 2014; 44(5):625-40. 71. He C, Sumpter R Jr, Levine B. Exercise induces autophagy in peripheral tissues and in the brain. Autophagy. 2012;8(10):1548-51. 72. Liu X, Niu Y, Yuan H, Huang J, Fu L. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism. 2015;64(6):658-65. 73. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132-41. 74. Leong A, Porneala B, Dupuis J, Florez JC, Meigs JB. Type 2 Diabetes Genetic Predisposition, Obesity, and All-CauseMortality Risk in the U.S.: A Multiethnic Analysis. Diabetes Care. 2016;39(4):539-46. 75. Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010 Apr;2010:476279. 76. Rizza RA. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes. 2010;59(11):2697-707. 77. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840-6. 78. Qatanani M, LazarMA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21(12):1443-55. 79. Brozinick JT Jr, Roberts BR, DohmGL. Defective signaling through Akt-2 and -3 but not Akt-1 in insulin-resistant human skeletal muscle: potential role in insulin resistance. Diabetes. 2003;52(4):935-41. 80. LafontanM, BerlanM. Do regional differences in adipocyte biology provide newpathophysiological insights? Trends Pharmacol Sci. 2003;24(6):276-83. 81. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184-223. 82. Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor- mediated signal transduction. J Biol Chem. 1997;272(2):971-6. 83. Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab. 2017;6(2):174-84. 1146

RkJQdWJsaXNoZXIy MjM4Mjg=