ABC | Volume 113, Nº2, August 2019

Viewpoint Kajita et al. Coronary angiography-based physiology technologies Arq Bras Cardiol. 2019; 113(2):282-285 1. AndersonHV,RoubinGS,LeimgruberPP,CoxWR,Douglas JS Jr,KingSB3rd, et al. Measurement of transstenotic pressure gradient during percutaneous transluminal coronary angioplasty . Circulation . 1986;73(6):1223-30. 2. Kern MJ, Lerman A, Bech JW, De Bruyne B, Eeckhout E, Fearon WF, et al. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation. 2006;114(12):1321-41. 3. Patel MR, Calhoon JH, Dehmer GJ, Grantham JA, Maddox TM, Maron DJ, et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 Appropriate Use Criteria for Coronary Revascularization in Patients With Stable Ischemic Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2017;69(17):2212-41. 4. StephanWindecker, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS guidelines on myocardial revascularization. Rev Esp Cardiol (Engl Ed). 2015;68(2):144. 5. Ramcharitar S, Daeman J, Patterson M, van Guens RJ, Boersma E, Serruys PW, et al. First direct in vivo comparison of two commercially available three-dimensional quantitative coronary angiography systems. Catheter Cardiovasc Interv . 2008;71(1):44-50. 6. Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61(22):2233-41. 7. Yong AS, Ng AC, Brieger D, Lowe HC, Ng MK, Kritharides L. Three- dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. Eur Heart J. 2011;32(3):345-53. 8. Ofili EO, Kern MJ, St Vrain JA, Donohue TJ, Bach R, al-Joundi B, et al. Differential characterization of blood flow, velocity, and vascular resistance between proximal and distal normal epicardial human coronary arteries: analysis by intracoronary Doppler spectral flow velocity. Am Heart J. 1995;130(1):37-46. 9. Liu B, Tang D. Influence of non-Newtonian properties of blood on the wall shear stress in human atherosclerotic right coronary arteries. Mol Cell Biomech . 2011;8(1):73-90. 10. Morris PD, van de Vosse FN, Lawford PV , Hose DR , Gunn JP . “Virtual” (computed) fractional flow reserve: current challenges and limitations. JACC Cardiovasc Interv . 2015;8(8):1009-1017. 11. Xu B, Tu S, Qiao S, Qu X, Chen Y, Yang J, et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis. J Am Coll Cardiol . 2017;70(25):3077-87. 12. Pellicano M, Lavi I, De Bruyne B, Vaknin-Assa H, Assali A, Valtzer O, et al. Validation study of image-based fractional flow reserve during coronary angiography. Circ Cardiovasc Interv. 2017;10(9):pii:e005259. 13. Collet C, Onuma Y, Sonck J, Asano T, Vandeloo B, Kornowski R, et al. PW. Diagnostic performance of angiography-derived fractional flow reserve: a systematic review and Bayesian meta-analysis. Eur Heart J. 2018;39(35):3314-21. 14. Masdjedi K, van Zandvoort LJC, Balbi MM, Gijsen FJH, Ligthart JMR, Rutten MCM, et al. Validation of 3-Dimensional Quantitative Coronary Angiography based software to calculate Fractional Flow Reserve: Fast Assessment of STenosis severity (FAST)-study. EuroIntervention. 2019 May 14;pii:EIJ-D-19-00466. 15. Spitaleri G, Tebaldi M, Biscaglia S, Westra J, Brugaletta S, Erriquez A, et al. Quantitative flow ratio identifies nonculprit coronary lesions requiring revascularization inpatientswithSt-Segment-elevationmyocardial infarction and multivessel disease. Circ Cardiovasc Interv . 2018;11(2):e006023. 16. Mejía-Rentería H, Lee JM, Lauri F, van der Hoeven NW, de Waard GA, Macaya F, et al. Influence of microcirculatory dysfunction on angiography- based functional assessment of coronary stenoses. JACC Cardiovasc Interv. 2018;11(8):741-53. 17. Fearon WF, Achenbach S, Engstrøm T, Assali A, Shlofmitz R, Jeremias A, et al. Accuracy of fractional flow reserve derived from coronary angiography. Circulation. 2019;139:477-84. 18. Fearon WF, Bornschein B, Tonino PA, Gothe RM, Bruyne BD, Pijls NH, et al. Economic evaluation of fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. Circulation. 2010;122(24):2545-50. 19. Dattilo PB, Prasad A, Honeycutt E, Wang TY, Messenger JC. Contemporary patternsoffractionalflowreserveandintravascularultrasounduseamongpatients undergoingpercutaneouscoronaryinterventionintheunitedstatesinsightsfrom theNationalCardiovascularDataRegistry.JAmCollCardiol.2012;60(22):2337-9. 20. Berry C, McClure JD, Oldroyd KG. Meta-Analysis of death and myocardial infarction in the DEFINE-FLAIR and iFR-SWEDEHEART Trials. Circulation. 2017;136(24):2389-91. 21. Stone GW, Rizvi A, Newman W, Mastali K, Wang JC, Caputo R, et al. Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. N Engl J Med . 2010;362(18):1663-74. 22. Kandzari DE, Mauri L, Koolen JJ, Massaro JM, Doros G, Garcia-Garcia HM, et al. Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BI 105):1843-52. References This is an open-access article distributed under the terms of the Creative Commons Attribution License 285

RkJQdWJsaXNoZXIy MjM4Mjg=