ABC | Volume 112, Nº5, May 2019

Original Article Effting et al RE Effects: heart and obesity Arq Bras Cardiol. 2019; 112(5):545-552 5. Adeghate E, Singh J. Structural changes in themyocardiumduring diabetes- induced cardiomyopathy. Heart Fail Rev. 2014;19(1):15-23. 6. Gamez-Mendez AM, Vargas-Robles H, Ríos A, Escalante B. Oxidative stress- dependent coronary endothelial dysfunction in obese mice. PLoS One. 2015;10(9):e0138609. 7. Touati S, Montezano AC, Meziri F, Riva C, Touyz RM, Laurant P. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats. Clin Exp Pharmacol Physiol. 2015;42(2):179-85. 8. Sharma NM, Rabeler B, Zheng H, Raichlin E, Patel KP. Exercise training attenuates upregulation of p47(phox) and p67(phox) in hearts of diabetic rats. Oxid Med Cell Longev. 2016;2016:5868913. 9. Boardman NT, Hafstad AD, Lund J, Rossvoll L, Aasum E. Exercise of obese mice induces cardioprotection and oxygen sparing in hearts exposed to high-fat load. Am J Physiol Circ Physiol. 2017;313(5):H1054-62. 10. Di Meo S, Iossa S, Venditti P. Improvement of obesity-linked skeletal muscle insulin resistance by strength and endurance training. J Endocrinol. 2017;234(3):R159-81. 11. Hornberger TA Jr, Farrar RP. Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Can J Appl Physiol. 2004;29(1):16-31. 12. Scheffer DL, Silva LA, Tromm CB, da Rosa GL, Silveira PC, de Souza CT, et al. Impact of different resistance training protocols on muscular oxidative stress parameters. Appl Physiol Nutr Metab. 2012;37(6):1239-46. 13. Vilela TC, Effting PS, Dos Santos PG, Farias H, Paganini L, Rebelo SH, et al. Aerobic and strength training induce changes in oxidative stress parameters and elicit modifications of various cellular components in skeletal muscle of aged rats. Exp Gerontol. 2018 Jun;106:21-7. 14. Ayala JE, Samuel VT, Morton GJ, Obici S, Croniger CM, Shulman GI, et al. Standardoperatingprocedures fordescribingandperformingmetabolictests of glucose homeostasis in mice. Dis Model Mech. 2010;3(9‑10):525-34. 15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. 16. Dong J, Sulik KK, Chen SY. The role of NOX enzymes in ethanol- induced oxidative stress and apoptosis in mouse embryos. Toxicol Lett. 2010;193(1):94-100. 17. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049-55. 18. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. 19. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74(1):214-26. 20. Grotto D, Santa Maria LD, Boeira S, Valentini J, Charão MF, Moro AM, et al. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J Pharm Biomed Anal. 2007;43(2):619-24. 21. Barba I, Miró-Casas E, Torrecilla JL, Pladevall E, Tejedor S, Sebastián-Pérez R, et al. High-fat diet induces metabolic changes and reduces oxidative stress in female mouse hearts. J Nutr Biochem. 2017 Feb;40:187-93. 22 Carbone S, Mauro AG, Mezzaroma E, Kraskauskas D, Marchetti C, Buzzetti R, et al. A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice. Int J Cardiol. 2015 Nov 1;198:66-9. 23. Zeng C, Zhong P, Zhao Y, Kanchana K, Zhang Y, Khan ZA, et al. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF- κ B both in vitro and in vivo. J Mol Cell Cardiol. 2015 Feb;79:1-12. 24. Chen F, Chen D, Zhao X, Yang S, Li Z, Sanchis D, et al. Interleukin-6 deficiency facilitates myocardial dysfunction during high fat diet-induced obesity by promoting lipotoxicity and inflammation. BiochimBiophys Acta Mol Basis Dis. 2017;1863(12):3128-41. 25. Farias JM, Bom KF, TrommCB, Luciano TF, Marques SO, Tuon T, et al. Effect of physical training on the adipose tissue of diet-induced obesity mice: interaction between reactive oxygen species and lipolysis. Horm Metab Res. 2013;45(3):190-6. 26. Pinho RA, Sepa-Kishi DM, Bikopoulos G, Wu M V., Uthayakumar A, Mohasses A, et al. High-fat diet induces skeletal muscle oxidative stress in a fiber type-dependent manner in rats. Free Radic Biol Med. 2017 Sep;110:381-9. 27. Pieri BL, Souza DR, Luciano TF, Marques SO, Pauli JR, Silva AS, et al. Effects of physical exercise on the P38MAPK/REDD1/14-3-3 pathways in the myocardium of diet-induced obesity rats. Horm Metab Res. 2014;46(9):621-7. 28. Farhangi MA, Nameni G, Hajiluian G, Mesgari-Abbasi M. Cardiac tissue oxidative stress and inflammation after vitamin D administrations in high fat- diet induced obese rats. BMC Cardiovasc Disord. 2017;17(1):161. 29. Chen X, Zhong Z, Xu Z, Chen L, Wang Y. 2’,7’-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res. 2010;44(6):587‑604. 30. Tuon T, Souza PS, Santos MF, Pereira FT, Pedroso GS, Luciano TF, et al. Physicaltrainingregulatesmitochondrialparametersandneuroinflammatory mechanisms in an experimental model of Parkinson’s disease. Oxid Med Cell Longev. 2015;2015:261809. 31. Souza PS, Gonçalves ED, Pedroso GS, Farias HR, Junqueira SC, Marcon R, et al. Physical exercise attenuates experimental autoimmune encephalomyelitis by inhibiting peripheral immune response and blood- brain barrier disruption. Mol Neurobiol. 2017;54(6):4723-37. 32. Yi Y, Wang L, Li G, Guo H. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method. Catal Sci Technol. 2016;6(6):1593-1610. 33. Lennicke C, Rahn J, Lichtenfels R, Wessjohann LA, Seliger B. Hydrogen peroxide - production, fate and role in redox signaling of tumor cells. Cell Commun Signal. 2015 Sep 14;13:39. 34. Muthulakshmi S, Saravanan R. Protective effects of azelaic acid against high- fat diet-induced oxidative stress in liver, kidney and heart of C57BL/6J mice. Mol Cell Biochem. 2013;377(1-2):23-33. 35. Done AJ, Traustadóttir T. Nrf2mediates redox adaptations to exercise. Redox Biol. 2016 Dec;10:191-9. 36. MerryTL,RistowM.Nuclear factorerythroid-derived2-like2 (NFE2L2,Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice. J Physiol. 2016;594(18):5195-207. 37. WilliamsonD, Gallagher P, HarberM, HollonC, Trappe S. Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle. J Physiol. 2003;547(Pt 3):977-87. 38. JooMS, KimWD, Lee KY, Kim JH, Koo JH, KimSG. AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Mol Cell Biol. 2016;36(14):1931-42. 39. PetersenAMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154-62. 40. Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol. 2015;11(2):86-97. 551

RkJQdWJsaXNoZXIy MjM4Mjg=