ABC | Volume 112, Nº5, May 2019

Original Article Gomes et al Thermoregulation in hypertensive rats Arq Bras Cardiol. 2019; 112(5):534-542 15. Soares DD, LimaNR, Coimbra CC, Marubayashi, U. Intracerebroventricular tryptophan increases heating and heat storage rate in exercising rats. Pharmacol Biochem Behav. 2004;78(2):255-61. 16. Young AA, Dawson NJ. Evidence for on-off control of heat dissipation from the tail of the rat. Can J Physiol Pharmacol. 1982;60(3):392-8. 17. Brooks GA, Donovan CM, White TP. Estimation of anaerobic energy production and efficiency in rats during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(2):520-5. 18. Gordon CJ. Temperature regulation in laboratory rodents . Cambridge: Cambridge University Press; 1993. 19. Wanner SP, Primola-Gomes TN, Pires W, Guimaraes JB, Hudson AS, Kunstetter AC, et al. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology. Temperature (Austin). 2015;2(4):457-75. 20. Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R37-46. 21. Teixeira-Coelho F, Fonseca CG, Barbosa NHS, Vaz FF, Cordeiro LMS, Coimbra CC, et al. Effects of manipulating the duration and intensity of aerobic training sessions on the physical performance of rats. PLoS One. 2017;12(8):e0183763. 22. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA, et al. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533-53. 23. Gant N, Williams C, King J, Hodge BJ. Thermoregulatory responses to exercise: relative versus absolute intensity. J Sports Sci. 2004;22(11- 12):1083-90. 24. Ceroni A, Chaar LJ, Bombein RL, Michelini LC. Chronic absence of baroreceptor inputs prevents training-induced cardiovascular adjustments in normotensive and spontaneously hypertensive rats. Exp Physiol. 2009;94(6):630-40. 25. Mueller PJ. Physical (in)activity-dependent alterations at the rostral ventrolateral medulla: influence on sympathetic nervous system regulation. Am J Physiol Regul Integr Comp Physiol. 2010;298(6):R1468‑74. 26. Pasqualini L, Schillaci G, Innocente S, Pucci G, Coscia F, Siepi D, et al. Lifestyle interventionimprovesmicrovascularreactivityandincreasesserumadiponectinin overweighthypertensivepatients.NutrMetabCardiovascDis.2010;20(2):87-92. 27. Melo RM, Martinho E, Michelini LC. Training-induced, pressure-lowering effect in SHR: wide effects on circulatory profile of exercised and nonexercised muscles. Hypertension. 2003;42(4):851-7. 28. Amaral SL, Michelini LC. Effect of gender on training-induced vascular remodeling in SHR. Braz J Med Biol Res. 2011;44(9):814-26. 29. Chaar LJ, Alves TP, Batista Junior AM, Michelini LC. Early Training-Induced Reduction of Angiotensinogen in Autonomic Areas-The Main Effect of Exercise on Brain Renin-Angiotensin System in Hypertensive Rats. PLoS One. 2015;10(9): e0137395. 30. Laughlin MH, Schrage WG, Mcallister RM, Garverick HA, Jones AW. Interaction of gender and exercise training: vasomotor reactivity of porcine skeletal muscle arteries. J Appl Physiol. 2001;90(1):216-27. 31. Damatto RL, Martinez PF, Lima AR, Cezar MD, Campos DH, Oliveira Jr SA, etal.Heart failure-inducedskeletalmyopathy inspontaneouslyhypertensive rats. Int J Cardiol. 2013;167(3):698-703. 32. Cramer MN, Jay O. Selecting the correct exercise intensity for unbiased comparisons of thermoregulatory responses between groups of different mass and surface area. J Appl Physiol. 2014:116(9);1123-32. 541

RkJQdWJsaXNoZXIy MjM4Mjg=