ABC | Volume 112, Nº5, May 2019

Review Article Amorim et al Kidney disease in diabetes Arq Bras Cardiol. 2019; 112(5):577-587 44. ZhuQ, Scherer PE. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat Rev Nephrol. 2018;14(2):105-20. 45. ChawlaT,SharmaD,SinghA.Roleofthereninangiotensinsystem indiabetic nephropathy. World J Diabetes. 2010;1(5):141-5. 46. Carmines PK. The renal vascular response to diabetes. Curr Opin Nephrol Hypertens. 2010;19(1):85-90. 47. LimAKH. Diabetic nephropathy - complications and tratment. Int J Nephrol Renovasc Dis. 2014 Oct 15;7:361-81. 48. Bakris GL. Recognition, pathogenesis, and treatment of different stages of nephropathy in patients with type 2 diabetes mellitus. Mayo Clin Proc. 2011;86(5):444-56. 49. VanBurenPN,TotoR.Hypertension indiabeticnephropathy:epidemiology, mechanisms,andmanagement.AdvChronicKidneyDis.2011;18(1):28-41. 50. Maric-Bilkan C. Obesity and diabetic kidney disease. Med Clin North Am. 2013;97(1):59-74. 51. Márquez E, Riera M, Pascual J, Soler MJ. Renin-angiotensin system within the diabetic podocyte. Am J Physiol Renal Physiol.. 2015;308(1):F1-10. 52. PaddaRS,ShiY,LoCS.,ZhangSL,ChanJS.Angiotensin-(1-7):anovelpeptideto treathypertensionandnephropathyindiabetes?.JDiabetesMetab.2015;6(10). 53. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal. 2013;19(10):1110-20. 54. Parker MD, Myers EJ, Schelling JR. Na+-H+exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci. 2015;72(11):2061-74. 55. Vallés PG, Bocanegra V, Gil LA, Costantino VV.Physiological functions and regulation of the Na + /H + exchanger [NHE1] in renal tubule epithelial cells. Kidney Blood Press Res. 2015;40(5):452-66. 56. Peti-Peterdi J, Harris RC. Macula densa sensig and signaling mechanisms of renin release. J Am Soc Nephrol. 2010;21(7):1093-6. 57. Sedeek M, Nasrallah R, Touyz RM, Hébert RL. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol. 2013;24(10):1512-8. 58. Lozano-Maneiro L, Puente-García A. Renin-angiotensin-aldosterone system blockade in diabetic nephropathy. Present evidences. J Clin Med. 2015;4(11):1908-37. 59. Miranda-Díaz AG, Pazarín-Villaseñor L, Yanowsky-Escatell FG, Andrade- Sierra J. Oxidative stress in diabetic nephropathy with early chronic kidney disease. J Diabetes Res. 2016;2016:7047238. 60. Lindblom R, Higgins G, Coughlan M, De Haan JB. Targeting mitochondria- and reactive oxygen species-driven pathogenesis in diabetic nephropathy. Rev Diabet Stud. 2015;12(1-2):134-56. 61. Sharaf El Din UAA, Salem MM, Abdulazim DO. Diabetic nephropathy: time to withhold development and progression - a review. J Adv Res. 2017;8(4):363-73. 62. Manda G, Checherita AI, Comanescu MV, Hinescu ME. Redox signaling in diabetic nephropathy: hypertrophy versus death choices in mesangial cells and podocytes. Mediators Inflamm. 2015;2015:604208. 63. Johar DR, Bernstein LH. Biomarkers of stress-mediated metabolic deregulation in diabetes mellitus. Diabetes Res Clin Pract. 2017 Apr;126:222-9. 64. Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 2013;83(6):1029-41. 65. Guo K, Lu J, Huang Y, WuM, Zhang L, YuH, et al. Protective role of PGC-1 α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS One. 2015;10(4):e0125176. 66. Tavafi M. Diabetic nephropathy and antioxidants. J Nephropathol. 2013;2(1):20-7. 67. Mahmoodnia, L, Aghadavod E, Beigrezaei S, Rafieian-Kopaei M. An update on diabetic kidney disease, oxidative stress and antioxidant agents. J Renal Inj Prev. 2017;6(2):153-7. 68. Bolignano D, Cernaro V, Gembillo G, Baggetta R, Buemi M, D’Arrigo G. Antioxidant agents for delaying diabetic kidney disease progression: a systematic review and meta-analysis. PLoS One. 2017;12(6):e0178699. 69. Barman, S, Pradeep, RP, Srinivasan K. Zinc supplementation alleviates the progression of diabetic nephropathy by inhibiting the overexpression of oxidative-stress-mediated molecular markers in streptozotocin-induced experimental rats. J Nutr Biochem. 2018;54:113-29. 70. KhatamiP G,SoleimaniA,SharifiN,AghadavodE,AsemiZ.Theeffectsofhigh- dosevitaminEsupplementationonbiomarkersofkidney injury, inflammation, and oxidative stress in patients with diabetic nephropathy: a randomized, double-blind, placebo-controlled trial. J Clin Lipidol. 2016;10(4):922-9. 71. Testa R, Bonfigli AR, Genovese S, Nigris VD, Ceriello, A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients. 2016;8(5):E310. 72. Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci. 2013;124(3):139-52. 73. Pichler R, Afkarian M, Dieter BP, Tuttle KR. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol. 2017;312(4):F716-31. 74. Duran-Salgado MB, Rubio-Guerra AF. Diabetic nephropathy and inflammation. World J Diabetes. 2014;5(3):393-8. 75. Sharma D, Bhattacharya P, Kalia K, Tiwari V. Diabetic nephropathy: new insights into established therapeutic paradigms and novel molecular targets. Diabetes Res Clin Pract. 2017 Jun;128:91-108. 76. YapHL. MCP-1: a potential target for diabeticmicrovascular complications? Urol Nephrol Open Access J. 2017;5(3):3-5. 77. Anders H-J. Of inflammasomes and alarmins: IL-1 β and IL-1 α in kidney disease. J Am Soc Nephrol. 2016:27(9):2564-75. 78. García-García PM, Getino-Melián MA, Domínguez-Pimentel V, Navarro- González JF. Inflammation in diabetic kidney disease. World J Diabetes. 2014;5(4):431-43. 79. Sakai N, Wada T. Revisiting inflammation in diabetic nephropathy: the role of the Nlrp3 inflammasome in glomerular resident cells. Kidney Int. 2015;87(1):12-4. 80. Sun L, Kanwar YS. Relevance of TNF- α in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int. 2015;88(4):662-5. 81. ChenY,QiaoY,XuY,LingW,PanY,HuangY,etal.SerumTNF- α concentrations in type 2 diabetes mellitus patients and diabetic nephropathy patients: a systematic review andmeta-analysis. Immunol Lett. 2017 Jun;186:52-8. 82. Ratliff BB, AbdulmahdiW, Pawar R,WolinMS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25(3):119-46. 83. SindhughosaDA,PranamarthaAGMK.The involvementofproinflammatory cytokines in diabetic nephropathy: focus on interleukin 1 (IL-1), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF- α ) signaling mechanism. Bali Med J. 2017;6(1):44-51. 84. Feigerlová E, Battaglia-Hsu SF. IL-6 signaling in diabetic nephropathy: From pathophysiology to therapeutic perspectives. Cytokine Growth Factor Rev. 2017 Oct;37:57-65. 85. SuH, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol. 2017 Apr 21;8:405. 86. ElsherbinyNM,Al-GayyarMMH.TheroleofIL-18intype1diabeticnephropathy: theproblemandfuturetreatment.Cytokine.2016May;81:15-22. 87. FujitaT,OgiharaN,KamuraY,SatomuraA,FukeY,ShimizuC,etal.Interleukin-18 contributesmorecloselytotheprogressionofdiabeticnephropathythanother diabetic complications. ActaDiabetol. 2012;49(2):111-7. 586

RkJQdWJsaXNoZXIy MjM4Mjg=