ABC | Volume 112, Nº4, April 2019

Original Article Vassallo et al Mercury increases ACE activity and oxidative stress Arq Bras Cardiol. 2019; 112(4):374-380 1. Gupta M, Bansal JK, Khanna CM. Blood mercury in workers exposed to the preparation of mercury cadmium telluride layers on cadmium telluride base. Ind Health. 1996;34(4):421-5. 2. Asgary S, Movahedian A, Keshvari M, Taleghani M, Sahebkar A, Sarrafzadegan N. Serum levels of lead, mercury and cadmium in relation to coronary artery disease in the elderly: a cross-sectional study.Chemosphere. 2017;180:540-4. 3. Torres AD, Rai AN, Hardiek ML. Mercury intoxication and arterial hypertension: report of two patients and review of the literature. Pediatrics. 2000;105(3):E34. 4. Wiggers GA, Peçanha FM, Briones AM, Pérez-Girón JV, Miguel M, Vassallo DV, et al. Lowmercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries. Am J Physiol Heart Circ Physiol. 2008;295(3):H1033-43. 5. Mahboob M, Shireen KF, Atkinson A, Khan AT. Lipid peroxidation and antioxidant enzyme activity in different organs of mice exposed to low level of mercury. J Environ Sci Health B. 2001;36(5):687-97. 6. Azevedo BF, Simões MR, Fiorim J, Botelho T, Angeli JK, Vieira J, et al. Chronic mercury exposure at different concentrations produces opposed vascular responses in rat aorta. Clin Exp Pharmacol Physiol. 2016;43(7):712-9. 7. Rizzetti DA, Altermann CD, Martinez CS, Peçanha FM, VassalloDV, Uranga- Ocio JA, et al. Ameliorative effects of egg white hydrolysate on recognition memory impairments associated with chronic exposure to low mercury concentration. Neurochem Int. 2016;101:30-7. 8. RizzettiDA,MartinezCS,EscobarAG,daSilvaTM,Uranga-Ocio JA,Peçanha FM,etal. Eggwhite-derivedpeptidespreventmalereproductivedysfunction induced by mercury in rats. Food Chem Toxicol. 2017;100:253-64. 9. Rizzetti DA, Martín Á, Corrales P, Fernandez F, Simões MR, Peçanha FM, et al. Egg white-derived peptides prevent cardiovascular disorders induced by mercury in rats: role of angiotensin-converting enzyme (ACE) and NADPH oxidase. Toxicol Lett. 2017;281:158-74. 10. Salonen JT, Seppanen K, Lakka TA, Salonen R, Kaplan GA. Mercury accumulation and accelerated progression of carotid atherosclerosis: a population-based prospective 4-year follow-up study in men in eastern Finland. Atherosclerosis. 2000;148(2):265-73. 11. Houston MC. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med. 2007;13(2):S128-33. 12. Mitra S, Deshmukh A, Sachdeva R, Lu J, Mehta JL. Oxidized low-density lipoprotein and atherosclerosis implications in antioxidant therapy. Am J Med Sci. 2011;342(2):135-42. 13. Münzel T , Camici GG, Maack C, Bonetti NR, Fuster V , Kovacic JC. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J Am Coll Cardiol. 2017;70(2):212-29. 14. Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, et al. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice. J Clin Invest. 2008;118(1):183-94. 15. Pecanha FM, Wiggers GA, Briones AM, Perez-Giron JV, Miguel M, Garcia- Redondo AB, et al. The role of cyclooxygenase (COX)-2 derived prostanoids on vasoconstrictor responses to phenylephrine is increased by exposure to lowmercury concentration. J Physiol Pharmacol. 2010;61(1):29-36. 16. Aguado A, Galán M, Zhenyukh O, Wiggers GA, Roque FR, Redondo S, et al. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells throughMAPK, oxidative stress and cyclooxygenase-2 pathways. Toxicol Appl Pharmacol. 2013;268(2):188-200. 17. Furieri LB, Fioresi M, Junior RF , Bartolomé MV, Fernandes AA, Cachofeiro V , et al. Exposure to low mercury concentration in vivo impairs myocardial contractile function. Toxicol Appl Pharmacol. 2011;255(2):193-9. 18. Wiggers GA, Stefanon I, Padilha AS, Peçanha FM, Vassallo DV, Oliveira EM. Low nanomolar concentration of mercury chloride increases vascular reactivity to phenylephrine and local angiotensin production in rats. Comp Biochem Physiol C Toxicol Pharmacol. 2008;147(2):252-60. 19. FurieriLB, GalánM, AvendañoMS, García-RedondoAB, AguadoA, Martínez S, et al. Endothelial dysfunction of rat coronary arteries after exposure to low concentrations of mercury is dependent on reactive oxygen species. Br J Pharmacol. 2011;162(8):1819-31. 20. Frisbee JC, Maier KG, Stepp DW . Oxidant stress-induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats. Am J Physiol Heart Circ Physiol. 2002;283(6):H2160-8. 21. Zou MH. Peroxynitrite and protein tyrosine nitration of prostacyclin synthase. Prostaglandins Other Lipid Mediat. 2007;82(1-4):119-27. 22. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37. 23. Touyz RM. Reactive oxygen species and angiotensin II signaling in vascular cells-- implications in cardiovascular disease. Braz J Med Biol Res. 2004;37(8):1263-73. 24. Huang YL, Cheng SL, Lin TH. Lipid peroxidation in rats administrated with mercuric chloride. Biol Trace Elem Res. 1996;52(2):193-206. 25. Miller DM,Woods JS. Urinary porphyrins as biological indicators of oxidative stress in the kidney. Interaction of mercury and cephaloridine. Biochem Pharmacol. 1993;46(12):2235-41. 26. Reus IS, Bando I, Andrés D , Cascales M. Relationship between expression of HSP70 andmetallothionein and oxidative stress duringmercury chloride induced acute liver injury in rats. J BiochemMol Toxicol. 2003;17(3):161-8. 27. Kim SH, Sharma RP . Mercury-induced apoptosis and necrosis in murine macrophages:roleofcalcium-inducedreactiveoxygenspeciesandp38mitogen- activatedproteinkinasesignaling.ToxicolApplPharmacol.2004;196(1):47-57. 28. Rodriguez-Martinez MA, Ruiz-Torres A. Homeostasis between lipid peroxidation and antioxidant enzyme activities in healthy human aging. Mech Ageing Dev. 1992;66(2):213-22. 29. Friedland J, Silverstein E. A sensitive fluorimetric assay for serumangiotensin- converting enzyme. Am J Clin Pathol. 1976;66(2):416-24. 30. Kobal AB, Horvat M, Prezelj M, Briski AS, Krsnik M, Dizdarevic T, et al. T he impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. J Trace Elem Med Biol. 2004;17(4):261-74. 31. Wolf MB, Baynes JW . Cadmium and mercury cause an oxidative stress- induced endothelial dysfunction. Biometals . 2007;20(1):73-81. 32. García-Redondo AB, Briones AM, Avendaño MS, Hernanz R, Alonso MJ, Salaices M. Losartan and tempol treatments normalize the increased response to hydrogen peroxide in resistance arteries fromhypertensive rats. J Hypertens. 2009;27(9):1814-22. 33. Vassallo DV, Simões MR, Furieri LB, Fioresi M, Fiorim J, Almeida EA, et al. Toxic effects of mercury, lead and gadolinium on vascular reactivity. Braz J Med Biol Res. 2011;44(9):939-46. References 379

RkJQdWJsaXNoZXIy MjM4Mjg=