ABC | Volume 112, Nº3, March 2019

Updated The Brazilian Society of Cardiology and Brazilian Society of Exercise and Sports Medicine Updated Guidelines for Sports and Exercise Cardiology - 2019 Arq Bras Cardiol. 2019; 112(3):326-368 139. McNally EM, Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res. 2017;121(7):731-48. 140. Pi SH, Kim SM, Choi JO, Kim EK, Chang SA, Choe YH, et al. Prognostic value of myocardial strain and late gadolinium enhancement on cardiovascular magnetic resonance imaging in patients with idiopathic dilated cardiomyopathy with moderate to severely reduced ejection fraction. J Cardiovasc Magn Reson. 2018;20(1):36. 141. Merlo M, Cannatà A, Gobbo M, Stolfo D, Elliott PM, Sinagra G. Evolving concepts in dilated cardiomyopathy. Eur J Heart Fail. 2018;20(2):228-39. 142. Asif IM, Harmon KG. Incidence and etiology of sudden cardiac death: new updates for athletic departments. Sports Health. 2017;9(3):268-79. 143. Asatryan B, Vital C, Kellerhals C, Medeiros-Domingo A, Gräni C, Trachsel LD, et al. Sports-related sudden cardiac deaths in the young population of Switzerland. PLoS One. 2017;12(3):e0174434. 144. Emery MS, Kovacs RJ. Sudden cardiac death in athletes. JACC Heart Fail. 2018;6(1):30-40. 145. Herdy AH, Lopez-Jimenez F, Terzic CP, Milani M, Stein R, Carvalho T, et al; Sociedade Brasileira de Cardiologia. South American Guidelines for Cardiovascular Disease Prevention and Rehabilitation. Arq Bras Cardiol. 2014;103(2 Supl.1):1-31. 146. Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet. 2015;386(9995):813-25. 147. Sedaghat-Hamedani F, Haas J, Zhu F, Geier C, Kayvanpour E, Liss M, et al. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J. 2017;38(46):3449-60. 148. Hotta VT, Tendolo SC, Rodrigues AC, Fernandes F, Nastari L, Mady C. Limitations in the diagnosis of noncompaction cardiomyopathy by echocardiography. Arq Bras Cardiol. 2017;109(5):483-8. 149. Finsterer J, Stöllberger C, Towbin JA. Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol. 2017;14(4):224-37. 150. Thavendiranathan P, Dahiya A, PhelanD, Desai MY, TangWH. Isolated left ventricular non-compaction controversies in diagnostic criteria, adverse outcomes and management. Heart. 2013;99(10):681-9. 151. Ganga HV, Thompson PD. Sports participation in non-compaction cardiomyopathy: a systematic review. Br J Sports Med. 2014;48(20):1466-71. 152. Coris EE, Moran BK, De Cuba R, Farrar T, Curtis AB. Left ventricular non-compaction in athletes: to play or not to play. Sports Med. 2016;46(9):1249-59. 153. Gati S, Chandra N, Bennett RL, Reed M, Kervio G, Panoulas VF, et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non- compaction in athletes? Heart. 2013;99(6):401-8. Erratum in: Heart. 2013;99(7):506. 154. Caselli S, Ferreira D, Kanawati E, Di Paolo F, Pisicchio C, Attenhofer Jost C, et al. Prominent left ventricular trabeculations in competitive athletes: a proposal for risk stratification andmanagement. Int J Cardiol. 2016 Nov 15;223:590-5. 155. Monge-Maillo B, López-Vélez R. Challenges in themanagement of Chagas disease in Latin-American migrants in Europe. Clin Microbiol Infect. 2017;23(5):290-5. 156. CucunubáZM,OkuwogaO,BasáñezMG,NouvelletP. Increasedmortality attributedtoCha gasdisease:asystematicreviewandmeta-analysis.Parasit Vectors. 2016 Jan 27;9:42. 157. TrainaMI, Hernandez S, Sanchez DR, Dufani J, SalihM, Abuhamidah AM, et al. Prevalence of Chagas Disease in a U.S. population of Latin American immigrants with conduction abnormalities on electrocardiogram. PLoS Negl Trop Dis. 2017;11(1):e0005244. 158. Merejo Peña CM, Reis MS, Pereira BB, Nascimento EM, Pedrosa RC. Dysautonomy in different death risk groups (Rassi score) in patients with Chagas heart disease. Pacing Clin Electrophysiol. 2018;41(3):238-45. 159. Gadioli LP, Miranda CH, Pintya AO, de Figueiredo AB, Schmidt A, Maciel BC, et al. The severity of ventricular arrhythmia correlates with the extent of myocardial sympathetic denervation, but not with myocardial fibrosis extent in chronic Chagas cardiomyopathy: Chagas disease, denervation and arrhythmia. J Nucl Cardiol. 2018;25(1):75-83. 160. Costa HS, Nunes MC, Souza AC, LimaMM, Carneiro RB, Sousa GR, et al. Exercise-induced ventricular arrhythmias and vagal dysfunction in Chagas disease patients with no apparent cardiac involvement. Rev Soc Bras Med Trop. 2015;48(2):175-80. 161. Tassi EM, Continentino MA, do Nascimento EM, Pereira BB, Pedrosa RC. Relationship between fibrosis and ventricular arrhythmias in Chagas heart disease without ventricular dysfunction. Arq Bras Cardiol. 2014;102(5):456-64. 162. Matos LD, Azevedo LF, Brum PC, Sosa EA, Martinelli M, Negrão CE. Long distance runner with dilated cardiomyopathy and excellent performance. Arq Bras Cardiol. 2011;96(1):e3-6. 163. Panhuyzen-GoedkoopNM, Wilde AA. Athletes with channelopathymay be eligible to play. Neth Heart J. 2018;26(3):146-53. 164. Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human induced pluripotent stem cell-derived cardiomyocytes as models for cardiac channelopathies: a primer for non-electrophysiologists. Circ Res. 2018;123(2):224-43. 165. Despa S, Vigmond E. From single myocyte to whole heart: the intricate dance of electrophysiology and modeling. Circ Res. 2016;118(2):184-6. 166. Fonseca DJ, Vaz da SilvaMJ. Cardiac channelopathies: the role of sodium channel mutations. Rev Port Cardiol. 2018;37(2):179-99. 167. Lazzerini PE, Capecchi PL, Laghi-Pasini F, Boutjdir M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat Rev Cardiol. 2017;14(9):521-35. 168. Etheridge SP, Saarel EV, Martinez MW. Exercise participation and shared decision-making in patients with inherited channelopathies and cardiomyopathies. Heart Rhythm. 2018;15(6):915-20. 169. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart diseasewith prolongation of theQ-T interval and sudden death. AmHeart J. 1957;54(1):59-68. 170. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012;5(4):868-77. Erratum in: Circ Arrhythm Electrophysiol. 2012;5(6):e119-20. 171. Garcia-Elias A, Benito B. Ion channel disorders and sudden cardiac death. Int J Mol Sci. 2018;19(3). pii: E692. 172. MazzantiA,MaragnaR,VacantiG,MonteforteN,BloiseR,MarinoM,etal. Interplay between genetic substrate, QTc duration, and arrhythmia risk in patientswith longQTsyndrome. JAmCollCardiol.2018;71(15):1663-71. 173. Moreno C, Oliveras A, Bartolucci C, Muñoz C, de la Cruz A, Peraza DA, et al. D242N, a KV7.1 LQTSmutation uncovers a key residue for IKs voltage dependence. J Mol Cell Cardiol. 2017 Sep;110:61-69. 174. Liu L, Tian J, Lu C, Chen X, Fu Y, Xu B, et al. Electrophysiological Characteristics of the LQT2 Syndrome Mutation KCNH2-G572S and Regulation by Accessory Protein KCNE2. Front Physiol. 2016 Dec 27;7:650. 175. Jackson HA, Accili EA. Evolutionary analyses of KCNQ1 and HERG voltagegated potassium channel sequences reveal location-specific susceptibility and augmented chemical severities of arrhythmogenic mutations. BMC Evol Biol. 2008 Jun 30;8:188. 176. Zimmer T, Surber R. SCN5A channelopathies--an update on mutations and mechanisms. Prog Biophys Mol Biol. 2008;98(2-3):120-36. 177. Wilde AA, Moss AJ, Kaufman ES, ShimizuW, PetersonDR, Benhorin J, et al. Clinical aspects of type 3 long-QT syndrome: an International Multicenter Study. Circulation. 2016;134(12):872-82. 178. Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348(19):1866-74. 362

RkJQdWJsaXNoZXIy MjM4Mjg=