ABC | Volume 111, Nº2, August 2018

Original Article Arq Bras Cardiol. 2018; 111(2):193-202 Miyazaki et al Videodensitometry assessment of AR to guide TAVI Figure 2 – Videodensitometric assessment of aortic regurgitation. A) Delineation of the aortic root (reference region: red area in the aortography) and the subaortic one third of LV (ROI: yellow area in the aortography) are shown by the analyser. The time-density curves are provided for both ROI (yellow) and reference (red) regions, and the AUC is automatically computed by the software time-density integrals. VD-AR corresponds to the relative AUC, which is automatically calculated as the ratio of the relative AUC in the ROI (yellow) to that in the reference area (red). Theoretically, the value of VD-AR ranges from 0 to 1. B) An example of VD-AR measurement before BPD. C) An example of VD-AR measurement after BPD. Reproduce and adopted from Tateishi et al. EuroIntervention 2016 14 ROI to that of the reference region (Figure 2). Theoretically, the value of VD-AR ranges from 0.0% to 100%. The relative delta VD-AR was calculated as = (VD-AR after BPD - VD-AR before BPD)/VD-AR before BPD, where a negative value indicates an improvement of the severity of AR. THV and post-dilatation balloon diameters / annulus diameter ratios Multislice computed tomography (MSCT) was performed following the local radiological protocol. Cover index was calculated as “(prosthesis nominal diameter – annulus diameter) / (prosthesis nominal diameter) × 100”. The post‑dilatation balloon size / annulus diameter ratio was calculated as “(balloon nominal diameter – annulus diameter) / (balloon nominal diameter) × 100”. Statistics When continuous variables were normally distributed, we summarized data as mean ± standard deviation. 19 If they were not normally distributed, median and inter-quartile range [IQR] were used. Mann-Whitney test was used to compare continuous variables between independent samples. Wilcoxon signed ranks test was performed to compare the serial changes between before and after BPD. All analyses were performed with SPSS 23 (IBM, Armonk, NY, USA). A two-tailed p < 0.05 defined the statistical significance. Results Baseline characteristics and echocardiographic data of this population (n = 61) are shown in Table 1. The mean age was 81.6 ± 7.6 years, and patients had a high Society of Thoracic Surgeons (STS)-Predicted Risk Of Mortality score, 8.8(4.6‑16.3). Either CoreValve (Medtronic, Minneapolis, MN, USA) (72%) or SapienXT (Edwards Lifesciences, Irvine, CA, USA) (28%) have been implanted. In most cases, TAVI was performed with general anaesthesia (98%) and transfemoral approach (97%). Influence of BPD on VD-AR The change of VD-AR from before- to after- BPD is shown in Figure 3 and a representative case is displayed in Figure 2 and Movie 1. VD-AR decreased significantly from 24.0[18.0-30.5]% (before BPD) to 12.0[5.5-19.0]% (after BPD) (p < 0.001). The median value of absolute delta VD‑AR was -10.0%, corresponding to a relative delta of - 46.2% (range: -100% to +40%). The frequencies of any improvement or deterioration of AR (as defined by VD-AR) were 82% (n = 50) and 18% (n = 11), respectively (Figure 4). The 25th percentile of the relative delta VD-AR was 20%, and this cut-point was arbitrarily used to define “a significant change” as follows: a relative delta < -20% defined as “a significant improvement”, a relative delta of -20 to +20% as “no change”, and a relative delta > +20% as “a significant deterioration”. There were 43 patients (70%) with significant improvement, 15 patients (25%) with no change, and 3 patients (5%) with significant deterioration. The THV cover index and the balloon size used in post‑dilatation were both available in 38 out of 61 patients – 25 (66%) among those with significantly improvement of PVL after BPD, 11 (29%) with no change in VD-AR, and 2 (5%) with deterioration of AR. THV cover index was 11.5[4.1,15.9] 195

RkJQdWJsaXNoZXIy MjM4Mjg=