ABC | Volume 110, Nº4, April 2018

Brief Communication De Santi et al Aerobic training and LV contractility post-MI Arq Bras Cardiol. 2018; 110(4):383-387 Table 1 – Exercise Cardiopulmonary Test Variables CG (n = 10) ITG (n = 10) MTG (n = 10) Before After Before After Before After VO 2 peak (ml/kg/min) 18,2 ± 4,4 17,1 ± 4,6 19,2 ± 5,1 21,9 ± 5,6* 18,8 ± 3,7 21,6 ± 4,5* VM peak (L/min) 55,9 ± 17,5 48,4 ± 15,9 † 61,4 ± 20,6 72,2 ± 21,9* 62,1 ± 14,5 68,6 ± 15,5 † Basal PO 2 (ml/systole) 4,3 ± 1,1 4,1 ± 0,8 3,75 ± 0,7 4,3 ± 0,9 4,5 ± 1,5 4,1 ± 1,0 PO 2 peak (ml/systole) 11,7 ± 3,1 11,3 ± 3,1 11,6 ± 3,0 12,8 ± 2,5 † 11,1 ± 1,1 12,3 ± 1,7 † RER 1,08 ± 0,08 1,08 ± 0,08 1,12 ± 0,11 1,19 ± 0,10 1,15 ± 0,07 1,19 ± 0,08 HR rest (bpm) 64,1 ± 12,8 65,6 ± 6,6 63,1 ± 9,9 62,1 ± 6,0 63,6 ± 11,6 64,8 ± 8,2 HR peak (bpm) 122,9 ± 28,3 123,1 ± 28,2 131,8 ± 20,6 133,2 ± 21,7 131,6 ± 12,3 129,0 ± 18,3 SBP (mmHg) 158,5 ± 22,4 159,5 ± 15,5 149,5 ± 25,2 146,5 ± 16,8 153,0 ± 20,1 145,2 ± 17,9 DBP peak (mmHg) 8,2 ± 0,6 8,4 ± 0,7 8,1 ± 0,6 8,0 ± 0,5 8,3 ± 0,7 8,1 ± 0,6 DP (bpm.mmHg) 19628 ± 5523 19422 ± 3870 19989 ± 5770 19596 ± 4468 20229 ± 3864 19566 ± 3990 VO 2 : oxygen uptake; VM: ventilation-minute; PO 2 : oxygen pulse; RER: respiratory exchange rate; HR: heart rate; SBP: systolic blood pressure; DBP: diastolic blood pressure; DP: double product. * p < 0.01: different, in the comparative analysis before and after, after the period of clinical follow-up. † p < 0.05: different, before and after comparative analysis, after the clinical follow-up period. Table 2 – Cardiac Magnetic Resonance Variable CG (n = 10) ITG (n = 10) MTG (n = 10) Before After Before After Before After FDV (ml) 156,6 ± 39,3 148,2 ± 34,1 174,8 ± 55,8 178,8 ± 44,9 143,8 ± 52,9 141,0 ± 45,5 FSV (ml) 91,6 ± 37,0 83,9 ± 38,3 96,3 ± 52,3 96,3 ± 36,3 82,6 ± 38,9 76,2 ± 36,5 FE (%) 43,9 ± 11,5 45,7 ± 14,4 47,0 ± 10,8 47,2 ± 6,8 44,6 ± 9,5 47,6 ± 10,4 STLONG (%) -9,0 ± 5,4 -9,1 ± 6,2 -9,2 ± 4,7 -8,6 ± 4,6 -10,1 ± 4,5 -10,5 ± 4,5 STCIRC_B (%) -15,5 ± 4,3 -17,8 ± 3,3 -17,0 ± 3,3 -17,2 ± 3,0 -14,2 ± 4,6 -14,9 ± 3,4 STCIRC_M (%) -13,5 ± 4,5 -14,4 ± 3,6 -13,5 ± 3,6 -14,5 ± 3,5 -12,0 ± 2,1 -12,5 ± 2,4 STCIRC_A (%) -10,5 ± 4,6 -12,2 ± 6,9 -10,3 ± 5,6 -11,5 ± 4,5 -11,2 ± 4,4 -12,5 ± 8,4 STRAD_B (%) 57,4 ± 16,6 84,1 ± 30,9 † 63,3 ± 19,5 58,6 ± 18,8 67,9 ± 24,5 60,4 ± 25,5 STRAD_M (%) 57,8 ± 27,9 74,3 ± 36,1 † 59,1 ± 21,3 58,5 ± 25,8 57,5 ± 21,0 55,6 ± 19,8 STRAD_A (%) 38,2 ± 26,0 52,4 ± 29,8* 41,8 ± 25,0 41,4 ± 19,4 38,3 ± 25,8 38,9 ± 17,9 ROT_B (°) -2,2 ± 1,4 -2,3 ± 0,9 -1,6 ± 1,3 -1,5 ± 1,1 -1,9 ± 0,9 -2,3 ± 1,2 ROT_A (°) 3,2 ± 1,7 4,0 ± 3,4 4,3 ± 2,4 4,0 ± 2,0 3,9 ± 1,7 3,5 ± 2,1 TWIST (°) 5,4 ± 2,1 6,3 ± 3,3 5,9 ± 2,8 5,5 ± 2,0 5,9 ± 1,5 5,9 ± 2,5 FDV: final diastolic volume; FSV: final systolic volume; EF: ejection fraction; STLONG: overall longitudinal strain; STCIRC_B: basal circumferential strain; STCIRC_M: medial circumferential strain; STCIRC_A: apical circumferential strain; STRAD_B: basal radial strain; STRAD_M: medial radial strain; STRAD_A: radial apical strain; ROT_B: basal rotation; ROT_A: apical rotation; Twist: angular difference between apical rotation and basal rotation. * p < 0.01: different, in the comparative analysis before and after, after the period of clinical follow-up. † p < 0.05: different, before and after comparative analysis, after the clinical follow-up period. suggests that the myocardial deformation parameters may be more sensitive, in comparison with the classical parameters of evaluation of ventricular remodeling, in the identification of post-infarction myocardial adaptations between patients submitted or not to TFA programs. We postulate that in order to improve the mechanical efficiency of the cardiac muscle, there was an adaptation of the post-infarction myocardium in the GC that required an increase in systolic thickening as a probable mechanism for maintaining adequate systolic volume and cardiac output in the resting state. On the other hand, TFA may have contributed to compensatory adaptive mechanisms sensitive to radial strain analysis not to be triggered in trained groups as part of post‑infarction myocardial adaptations, necessary to meet the metabolic and tissue demands in resting state. From the perspective of parameters analysis of myocardial deformation and ventricular rotation, the interval aerobic training did not show significant changes in left ventricle contraction mechanics in comparison with continuous moderate aerobic training. Throughout last decades, since the publication of Jugdutt et al, 9 several scientific works emerged that attempted to evaluate TFA influence on ventricular remodeling process in post-MI context. Giannuzzi et al., 4 showed an increase 385

RkJQdWJsaXNoZXIy MjM4Mjg=