Chlamydia pneumoniae and Atherosclerosis. Identification of Bacterial DNA in the Arterial Wall

Mário Sérgio Soares de Azeredo Coutinho, Fernando Joo Daniel Nakamae, Maria Elizabeth Menezes

Florianópolis, SC - Brazil

Objective - The intracellular Gram-negative bacterium Chlamydia pneumoniae has been associated with atherosclerosis. The presence of Chlamydia pneumoniae has been investigated in fragments of the arterial wall with a technique for DNA identification.

Methods - Arterial fragments obtained from vascular surgical procedures in 58 patients were analyzed. From these patients, 39 were males and the mean age was 65±6 years. The polymerase chain reaction was used to identify the bacterial DNA with a pair of primers that codify the major outer membrane protein (MOMP) of Chlamydia pneumoniae. The amplified product was visualized by electrophoresis in the 2% agarose gel stained with ethidium bromide, and it was considered positive when migrating in the band of molecular weight of the positive controls.

Results - Seven (12%) out of the 58 patients showed positive results for Chlamydia pneumoniae.

Conclusion - DNA from Chlamydia pneumoniae was identified in the arterial wall of a substantial number of patients with atherosclerosis. This association, which has already been described in other countries, corroborates the evidence favoring a role played by Chlamydia pneumoniae in atherogenesis.

Keywords: Chlamydia pneumoniae, atherosclerosis, polymerase chain reaction
Chlamydia pneumoniae is an intracellular Gram-negative bacterium with a wide distribution. It accounts for 10% of the pneumonias in the community and serum positivity is high in adults age 60. Most of the individuals will have been exposed to Chlamydia pneumoniae at least once during their lives. As efficient antibiotics against Chlamydia pneumoniae are available, the confirmation of a causal relation between Chlamydia pneumoniae and atherosclerosis may drastically change the approach to atherosclerotic disease.

As Brazilian data about the association of Chlamydia pneumoniae and atherosclerosis did not exist, we carried out this preliminary study aiming to investigate the presence of Chlamydia pneumoniae in the arterial wall of individuals with atherosclerotic disease using techniques of DNA detection.

Methods

This is a descriptive study of patients with atherosclerotic disease who underwent vascular surgical procedures. Fragments of arterial tissues excised from 58 patients operated upon (53 myocardial revascularizations and 5 vascular surgeries) were the object of this study. The fragments originated from the following sites: ascending aorta (50), abdominal aorta (4), coronary artery (3), and femoral artery (1). Thirty-nine patients were males and 19 were females, and their ages ranged from 45 to 79 years (mean of 65 years). The surgical procedures were performed at the Serviço de Cirurgia Cardiovascular of the Instituto de Cardiologia (INCA) and at the Serviço de Cirurgia Cardiovascular of the Hospital Regional (São José, SC), which are public hospitals in Santa Catarina state, during the period of March to November '98. The study was approved by the Committee on Ethics in Research of the Instituto de Cardiologia de Santa Catarina, and the patients signed a consent form for the use of the surgical material in the research.

The arterial fragments encompassed the three tunicae (media, intima, and adventitia). The fragments obtained in myocardial revascularizations corresponded to the orifices of saphenous venous or internal thoracic artery graft bypasses. In the surgeries of the abdominal aorta and femoral artery, the fragments were resected from grossly damaged regions.

These fragments were then cut into smaller pieces (± 1mm), which were put into sterilized flasks with 0.9% saline solution and stored at -20°C to be processed within 2 months.

After thawing, the tissue was macerated and put into suspension in a buffer solution for protein digestion composed of the following items: 0.1mg/ml of proteinase K (Sigma®), 100mM of NaCl; 10mM of TrisHCl in pH 8; 25mM of ethylenediaminetetraacetic acid (EDTA); and 0.5% of sodium dodecyl sulfate. The solution was then incubated at 50°C for 12-18 hours. DNA extraction was performed through standard techniques using a solution of phenol/chloroform/isoamyl alcohol (25:24:1) mixed with the centrifuged liquid phase of the product minus the protein. The DNA pellet was suspended in the buffer solution and agitated for a few hours at room temperature to facilitate solubilization. Then, a mixture of 200uM of each oligonucleotide (dATP, dCTP, dGTP, and dTTP – Sigma®), 1µM of each primer, and 1U of the Taq DNA polymerase (Sigma®) were added to the DNA in the solution.

The two primers used codify the major outer membrane protein (MOMP) of Chlamydia pneumoniae and their sequences are as follows: a) TGC CAA CAG ACG (bases 1053 to 1076 of the MOMP gene); b) TAA CTG CAT GGA ACC CTT CTT TAC TAG (bases 1254 to 1280 of the MOMP gene). DNA amplification using the polymerase chain reaction technique was performed in a Perkin-Elmer® thermocycler model 9600, using 25 to 30 cycles (50°C for 2 min, 95°C for 5 min, and 72°C for 5 min). The amplification products were qualitatively analyzed by electrophoresis in 2% agarose gel stained with ethidium bromide, and they were considered positive when the band migrated to the molecular weight corresponding to the positive controls. Negative controls with distilled water were also used. The gel was photographed with a Polaroid® camera under ultraviolet light. Routine care to avoid contamination of the material was taken.

The patients’ records were revised and data about their risk factors were recorded. The definitions for the risk factors were as follows: tobacco smoking (current smoker or ex-smoker for no longer than 3 months); hypertension (systolic pressure at rest >140mmHg or diastolic pressure of 90mmHg, or both; or treatment with anti-hypertensive drugs, or both); diabetes mellitus (fasting glycemia >126 mg/dL, or treatment with oral drugs for treating hyperglycemia, or insulin, or both); obesity (body mass index >30 kg/m²).

Results

The arterial fragments of 7 out of 58 patients were positive for the presence of Chlamydia pneumoniae DNA. From the positive fragments, 5 (71.4%) were removed from the ascending thoracic aorta, one (14.3%) from the abdominal aorta, and one (14.3%) from the femoral artery (table I).

Distribution of the general characteristics, site of removal of the arterial fragments, and the risk factors of the positive and negative patients for Chlamydia pneumoniae are shown in table I.

<table>
<thead>
<tr>
<th>Table I - Distribution of the sites of excision of the arterial fragments in patients with positive and negative results polymerase chain reaction for Chlamydia pneumoniae.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Ascending thoracic aorta</td>
</tr>
<tr>
<td>Abdominal aorta</td>
</tr>
<tr>
<td>Coronary artery</td>
</tr>
<tr>
<td>Femoral artery</td>
</tr>
</tbody>
</table>

Table II - Prevalence of the classical risk factors for atherosclerosis in the group of patients with positive and negative results for the presence of Chlamydia pneumoniae using the polymerase chain reaction technique.

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Positive (N=7)</th>
<th>Negative (N=61)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean)</td>
<td>65.3</td>
<td>65.4</td>
</tr>
<tr>
<td>Malesex</td>
<td>5 (71)</td>
<td>34 (67)</td>
</tr>
<tr>
<td>Smoking</td>
<td>7 (71)</td>
<td>30 (59)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>6 (86)</td>
<td>31 (63)</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>1 (14)</td>
<td>10 (20)</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>2 (29)</td>
<td>9 (18)</td>
</tr>
<tr>
<td>Obesity</td>
<td>2 (29)</td>
<td>43 (22)</td>
</tr>
</tbody>
</table>

Discussion

Our study showed 12% (7/58) of the results positive for Chlamydia pneumoniae detected with the PCR technique in fragments of arteries with atherosclerosis. In the international medical literature, positivity for Chlamydia pneumoniae in arteries varies from 0% to 100%.

In 1993, Kuo et al.34 in South Africa detected Chlamydia pneumoniae in the first time in atheromatous lesions originating from autopsies using the PCR technique and found a positivity of 43%. Grayston et al.31 showed, using the same technique, the presence of Chlamydia pneumoniae in 60% of the fragments of carotid arteries obtained through endarterectomy. Campbell et al.30 showed the presence of the microorganism in 32% of the fragments of endarterectomy of coronary arteries in American patients. Kuo et al.34, using the PCR technique, detected a 14% positivity for Chlamydia pneumonia in autopsy samples from atherosclerotic coronary arteries of American individuals, whose ages ranged from 15 to 34 years. On et al.35, in the United Kingdom, showed the presence of Chlamydia pneumoniae in 44% of the fragments of atheromatous lesions and in 55% of the iliac arteries. Biaioli et al.36 found positivity for Chlamydia pneumoniae in 46% of the fragments of the atheromatous aortas studied. Wong et al.37 found DNA of Chlamydia pneumoniae in grafts of the saphenous vein (38%), of the native coronary arteries (38%), and of the internal thoracic artery (30%). Juvonen et al.38 showed 100% (12/12) positivity for Chlamydia pneumoniae in atheromatous plaques of the carotid artery with PCR and immunohistochemical techniques.

Maass et al.39 found 21% (51/238) positivity for Chlamydia pneumoniae in atheromatous tissues of various parts of the body (thoracic aorta during revascularization procedures, carotid endarterectomy, correction of aortic aneurysms, and revascularization of lower limbs). In addition, the authors showed the variability of the microorganism in 16% of the arterial samples examined.

Conflicting studies, however, exist. Weiss et al.40 found only one PCR-positive sample in a total of 58 analyzed specimens. Similarly, Paterson et al.41 found positivity in none of the 49 arterial samples removed in endarterectomies and autopsies.

In a review of 13 pathology studies carried out at Oxford University, 52% of the atheromatous lesions showed the presence of Chlamydia pneumoniae, using either immunohistochemistry, PCR, or electron microscopy. The controls of these studies showed positivity of only 5%, resulting in an odds ratio of 10 (95% CI = 5-22), and, therefore, proving to be a very strong statistical association.

Another more recent review37 of 17 studies on Chlamydia pneumoniae in the vascular tissue concludes that the presence of this microorganism in atherosclerotic lesions is currently unquestionable, but no conclusive evidence exists in regard to its causal role in atherosclerosis.

The low positivity of Chlamydia pneumoniae in our study and the variability between the different studies may be explained as follows: a) lack of uniformity in the distribution of Chlamydia pneumoniae in the arterial wall; b) differences in techniques of detection; c) geographical differences in the prevalence of infection by Chlamydia pneumoniae; and d) publication bias. Nevertheless, once the presence of the microorganism is detected in a damaged area, questioning its role in the process is quite natural. What role does Chlamydia pneumoniae play in atherogenesis? The three following possibilities exist: a) Chlamydia pneumoniae is a mere observer of the process, i.e., it only colonizes the damaged arterial wall without taking part in atherogenesis; b) Chlamydia pneumonia accelerates atherogenesis, working with other risk factors; c) Chlamydia pneumoniae is the cause of the arterial inflammation.

Based on evidence currently available, we can say that Chlamydia pneumoniae is present in a high percentage of atherosclerotic plaques, but the meaning of this finding is still controversial. Data are compatible with the theory of participation of Chlamydia pneumoniae in atherogenesis; the evidence of causality, however, is still lacking.

The causal relation between Chlamydia pneumoniae and atherosclerosis is yet to be demonstrated. Some clinical randomized trials, however, have been published22,28,30,39, in which two macrolides (roxithromycin and azithromycin) were combined. Clinical events (myocardial infarction, ischemic death, and recurrent angina) decreased in a statistically significant way in 2 studies26,30, but not in another39. In this latter study, a reduction in the levels of inflammatory markers (C-reactive protein and interleukin-6) was shown after the use of the antibiotics. Because these are preliminary studies, the results of the ongoing clinical trials should be awaited40,41. These trials have enough statistical power to test the hypothesis of the benefit of the use of antibiotics in the prevention of cardiovascular events.

The importance of defining the role of Chlamydia pneumoniae in atherogenesis is fundamental, because it may drastically change the paradigm of the disease and its therapeutic approach, as well. The recent example of peptic ulcer and the change of its paradigm makes us consider the possibility of an infectious cause for atherosclerosis. For a long time, peptic ulcer was believed to be caused by gastric hyperacidity and that an acid environment would be hostile to any type of micro-
organism. Nevertheless, several studies confirmed the role of the helical bacterium Helicobacter pylori in determining that disease. Clinical randomized trials have shown the efficacy of antibiotics in healing gastroduodenal ulcerated lesions, confirming the causal relation between Helicobacter pylori and peptic ulcer.

The study of the role of an infectious agent in determining such a widely distributed disease as atherosclerosis has important clinical and public health implications. If a causal relation exists, the treatment of individuals with Chlamydia pneumoniae may modify the high incidence and prevalence of a disease that affects hundreds of thousands of people annually, and accounts for at least one fourth of the deaths of the adult population. Our study, due to its transversal characteristic, does not establish any causal relation between Chlamydia pneumoniae and atherosclerosis. It supports, however, the set of data currently available, which favor the infectious hypothesis of atherosclerosis.

Acknowledgments

We thank Drs. Amândio Rampinelli, Jairo Colaço, Lourival Bonatelli, Pierre Silveira, and Gilberto Galego for their help in the material collection phase. We also thank the staff of the Laboratório DNAnálise for their support in the analyses.

References